期刊文献+

融合偏微分方程和中值滤波的图像去噪模型 被引量:8

Image denoising model in combination with partial differential equation and median filtering
下载PDF
导出
摘要 针对基于偏微分方程(PDE)的图像去噪模型不能有效地去除脉冲噪声,并且低阶偏微分方程在去噪的同时会出现"块效应"现象的问题,提出一种融合偏微分方程和自适应中值滤波的图像去噪模型。该模型通过对图像梯度的分析,在梯度变化剧烈区域和梯度变化微小区域利用二阶模型去噪以提高去噪效率;而在梯度渐变区域利用四阶模型平滑图像以避免出现"块效应"现象。同时,利用脉冲噪声梯度值远大于边缘梯度值的特点,定位脉冲噪声所在区域,在该区域利用自适应中值滤波消除脉冲噪声。该方法能有效去除脉冲噪声,保护图像边缘并消除"块效应"现象,同时提高了去噪效率。实验表明了该模型的有效性。 The denoising model based on Partial Differential Equation (PDE) model cannot eliminate impulse noise and low-order PDE will produce blocky effect. In order to solve these problems, a denoising model combining PDE and adaptive median filtering was proposed. Through analyzing the image gradient, this model used second order model to denoise at the region with obvious gradient change and the region with tiny gradient change. At the smooth region, fourth order model was used to denoise. The region of the impulse noise was localized by making use of the characteristic that the gradient of the impulse noise is far bigger than the gradient of the edge. At this region, the adaptive median filtering was used to eliminate impulse noise. This method can eliminate impulse noise and protect the image edge effectively. It also can overcome the blocky effect and improve the denoisin~ efficiency. The experiments prove the validity of the model.
出处 《计算机应用》 CSCD 北大核心 2011年第9期2512-2514,共3页 journal of Computer Applications
基金 国防基础研究资助项目(B3120110005)
关键词 图像去噪 偏微分方程 自适应中值滤波 边缘 脉冲噪声 image denoising partial differential equation adaptive median filtering edge impulse noise
  • 相关文献

参考文献11

  • 1韩明,李磊民,黄玉清.基于特征模糊推理的形态学颗粒分割算法[J].计算机应用,2010,30(A12):3278-3280. 被引量:2
  • 2杨家红,何明志,佘利忠,钟坚成.结合USFFT Curvelet变换的各向异性扩散图像去噪模型[J].通信学报,2009,30(1):82-87. 被引量:9
  • 3LI LEIMING, HAN MING, HUANG YUQING. Map building based on line feature matching[ C]// Proceedings of the 8th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2010:6125 - 6129.
  • 4HUANG YUQING, YANG JIA. Study of robot landmark recognition with complex background [ C]// ICMIT 2007: Mechatronics, MEMS, and Smart Materials. [ S.l. ] : SPIE, 2007:1 - 6.
  • 5WITKIN A P. Scale space filtering[ C] // Proceedings of the 8th International Joint Conference on Artifical Intelligence. Karlsruhe, Germany: [ s. n. ], 1983:1019 - 1022.
  • 6PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 619 -639.
  • 7RUDIN L I, OSHER S, FATEM E. Nonlinear total variation based noise removal algorithms[ J]. Physica D, 1992, 60(1/2/3/4) : 259 - 268.
  • 8YU LI-YOU, KAVEH M. Four-order partial differential equations for noise removal [ J]. IEEE Transactions on Image Processing, 2000,9(10) : 1723 - 1729.
  • 9LYSAKER M, LUNDERVOLD A, TAI X-C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[ J]. IEEE Transactions on Image Processing, 2003, 12(12) : 1579 - 1590.
  • 10王际朝.一种组合总变差和4阶偏微分方程的图像去噪模型[J].中国图象图形学报,2008,13(8):1443-1446. 被引量:13

二级参考文献34

共引文献29

同被引文献56

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部