期刊文献+

不同翼梢小翼对飞机横航向特性的影响 被引量:7

Study on aircraft lateral-directional character with different winglets
原文传递
导出
摘要 利用有限体积法离散可压缩Euler方程,计算了带5种不同类型翼梢小翼的全机高速巡航外形。重点研究了不同小翼对飞机横航向静稳定性、机翼压力中心移动量和侧滑时滚转力矩系数随迎角变化的影响规律。研究结果表明:(1)翼梢小翼均不降低飞机的横向静稳定性,都将降低飞机的航向稳定性;(2)翼梢小翼均使机翼压力中心向外移动,小后掠角的传统小翼移动量最大,鲨鱼鳍型小翼的移动量最小;(3)小翼均没有改变全机滚转力矩系数随迎角的非线性变化趋势;(4)侧滑时滚转力矩系数随迎角的非线性变化主要是由于左右两翼作用力的差量引起的。 This paper has calculated the high-speed cruising aircraft shape with five different winglets by using the discreted compressible Euler equation, and studied the effect laws of the static lateral-directional stability, displacement of wing pressure center and the roll coefficient vs angle of attack during sideslip. The results show : ( 1 ) Winglets would increase the static lateral stability and decrease the static directional stability; (2)Winglets would make the wing pressure center move toward outside, the displacement of traditional winglet with small sweepback angle is the biggest, the shark winglet is the least; (3)Winglets would not change the nonlinear roll coefficient trends vs angle of attack during sideslip ; (4) The nonlinear roll coefficient trends vs angle of attack during sideslip is mostly due to the asymmetry wing pressure.
出处 《飞行力学》 CSCD 北大核心 2011年第4期41-44,共4页 Flight Dynamics
关键词 翼梢小翼 横航向静稳定性 机翼压心 winglet static lateral-directional stability wing pressure center
  • 相关文献

参考文献6

  • 1朱卫东,张彬乾.C型机翼局部优化设计研究[J].飞行力学,2009,27(3):11-14. 被引量:2
  • 2Reneaux J. Overview on drag reduction technologies for civil transport aircraft [ R]. ECCOMAS,2004.
  • 3肖涵山,陈作斌,刘刚,江雄.基于Euler方程的三维自适应笛卡尔网格应用研究[J].空气动力学学报,2003,21(2):202-210. 被引量:20
  • 4David L Rodriguez. Multidisciplinary optimization of a su- personic inlet using a cartesian CFD method [ R ]. AIAA 2004 -4492,2004.
  • 5Aftosmis M. Applications of space-filling curves to carte- sian methods for CFD [ R]. AIAA 2004-1232,2004.
  • 6吕志咏.边条翼及旋涡分离流[M].北京:航空工业出版社,1997.

二级参考文献12

  • 1Ilan Kroo.Nonplanar Wing Concepts for Increased Aircraft Efficiency[C]//VKI Lecture Series on Innovation Configurations and Advanced Concepts for Future Civil Aircraft,2005.
  • 2Ilan Kroo.Innovations in Aeronautics[R].AIAA-2004-0001,2004.
  • 3Ilan Kroo.A General Approach to Multiple Lifting Surface Analysis and Design[R].AIAA-84-2507,1984.
  • 4THOMPSON J. Aspects of numerical grid generation:current science and art[R]. AIAA 93-3538.
  • 5BERGER M, LEVEQUE R. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries[R], AIAA Paper 89-1930, 1989.
  • 6EQSTEIN B, LUNTZ A. NACHSON A .Cartesian Euler method for arbitrary aircraft configurations[R], AIAA Paper 89-1960,1989.
  • 7DE ZEEUW D, POWELL K. An Adaptively-Refined Cartesian mesh solver for the Euler equations[ R], AIAA Paper 91-1542,.1991.
  • 8MELTON J. ENOMOTO F, BERGER M,3D automatic Cartesian grid generation for ELder flows[R], AIAA Paper 93-3386-CP, 1993.
  • 9WANG Z J,CPHEN R J,HARIHARAN N,PRZEKWAS A J, Darren Grove. A 2^N tree-based automated viscous Cartesian grid methodology for feature capturing[R] ,AIAA Paper 99-3300,1999.
  • 10BONET J A, PERAIRE.An alternating digital tree(ADT) algorithm for 3D geometric searching and intersection problems[J],International J.Numerical Methods in Engineering, 1991.31 : 1-17.

共引文献20

同被引文献48

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部