期刊文献+

面向非特定人语音情感识别的PCA特征选择方法 被引量:8

PCA Based Feature Selection Algorithm on Speaker-independent Speech Emotion Recognition
下载PDF
导出
摘要 在语音情感识别中,如何选取有效的情感特征是识别过程的重要环节。迄今为止,一些常用的特征选择算法虽然能够帮助提高识别性能,但也存在理论性不强、随机性高、计算量大的缺点。因此提出了一种基于主成分分析(PCA)的特征选择方法,亦即对原始特征集合先进行PCA变换,再利用变换矩阵分析出原始特征进行变换时各自的权重,最后根据权重的大小对原始特征进行选择。实验结果表明,选择出的特征对识别率具有较大的贡献,属于重要特征。 A very important part of emotion recognition is how to select effective emotional features.Until now,some feature selection algorithms,which are usually used,can help boost recognition accuracy.But some defects,such as less robustness in theory,a higher randomness,more computation,still exist.For these reasons,a new feature selection algorithm based on PCA(principal component analysis) was proposed.First the original feature set was transformed by PCA,then analyzing the weights of these features using the transforming matrix and finally,choosing the important features according to their weights.The experiment result shows that features,which are selected by this method,make a high contribution to the recognition accuracy and they are important._
出处 《计算机科学》 CSCD 北大核心 2011年第8期212-213,256,共3页 Computer Science
基金 北京市属市管高等学校人才强教计划项目(PHR201007131)资助
关键词 情感识别 特征选择 主成分分析 Emotion recognition Feature selection PCA
  • 相关文献

参考文献7

  • 1Burkhardt F,Paeschke A,Rolfes M,et al.A database of Ger-man emotional speech. Interspeech-2005 . 2005
  • 2毛勇.基于支持向量机的特征选择方法的研究与应用[D]浙江大学,浙江大学2006.
  • 3郑发泰.基于神经元网络故障诊断主特征量提取的应用研究[J].煤矿机械,2007,28(6):188-190. 被引量:5
  • 4Hassan A,Damper RI.Emotion Recognition fromSpeech usingExtended Feature Selection and a Si mple Classifier. Inter-Speech . 2009
  • 5Anagnostopoulos C N.Feature selection in acted speech for thecreation of an emotion recognition personalization service. Third International Workshop on Semantic Media Adaptationand Personalization . 2008
  • 6Clavel C,Vasilescu I,Devillers L,et al.Fear-type emotion recognition for future audio-based surveillance systems. Speech Communica- tion . 2008
  • 7徐露,徐明星,杨大利.面向情感变化检测的汉语情感语音数据库[J].清华大学学报(自然科学版),2009(S1):1413-1418. 被引量:6

二级参考文献14

  • 1张立华,杨莹春.情感语音变化规律的特征分析[J].清华大学学报(自然科学版),2008,48(S1):652-657. 被引量:14
  • 2蒋丹宁,蔡莲红.基于语音声学特征的情感信息识别[J].清华大学学报(自然科学版),2006,46(1):86-89. 被引量:38
  • 3韩纪庆,邵艳秋.基于语音信号的情感处理研究进展[J].电声技术,2006,30(5):58-62. 被引量:11
  • 4王懋瑶.液压传动与控制[M].天津:天津大学出版社,2001..
  • 5葛思华.液压系统故障诊断[M].西安:西安交通大学出版社,1990.
  • 6罗毅.一种基于HMM和ANN的语音情感识别分类器[J].微计算机信息,2007,23(34):218-219. 被引量:10
  • 7Ververidis D,Kotropoulos C.A state of the art review onemotional speech databases. Proc 1st RichmediaConference . 2003
  • 8PAN Yuchun,XU Mangling,LIU Linquan,et al.Emotion-detecting based model selection for emotional speechrecognition. Proc IMACS Multiconference onComputational Engineering in Systems Applications(CESA) . 2006
  • 9Cowie R,Dauglas-Cowie E,Savidou S,et al.FEELTRACE:An instrument for recording perceivedemotion in real time. Proc ISCA ITEW on Speech andEmotion:Developing a Conceptual Framework . 2000
  • 10Pereira C.Dimensions of emotional meaning in speech. ISCA Workshop on Speech and Emotion . 2000

共引文献9

同被引文献60

  • 1楼红伟,胡光锐.基于Teager能量算子和频率弯折小波变换的语音识别特征参数[J].上海交通大学学报,2003,37(z1):79-82. 被引量:8
  • 2赵腊生,张强,魏小鹏.语音情感识别研究进展[J].计算机应用研究,2009,26(2):428-432. 被引量:21
  • 3朱君波,朱夏君,王守觉.PCA在语音检测中的应用研究[J].模式识别与人工智能,2006,19(5):629-633. 被引量:1
  • 4余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 5Vijayasenan D, Valente F, Bourlard H. Multistream speaker dia- rization of meetings recordings beyond MFCC and TI)OA fea- tures [J]. Speech Communication, 2012,54 (1) : 55-67.
  • 6Wang L, Minami K, Yamamoto K, et al. Speaker Recognition by Combining MFCC and Phase Information in Noisy Conditions [J]. IEICE Transactions on Information and Systems, 2010, E93D(9) :2397-2406.
  • 7Li Q, Huang Y. An Auditory-Based Feature Extraction Algo- rithm for Robust Speaker Identification Under Mismatched Conditions [J]. IEEE Transactions on Audio Speech and Lan- guage Processing, 2011,19(6) : 1791-1801.
  • 8Li Qi. An auditory-based transfrom for audio signal processing [C]// 2009 IEEE Workshop on Applications of Signal Proces- sing to Audio and Acoustics. New Paltz, NY, United states, Oct. 2009 : 181-184.
  • 9Dimitriadis D,Maragos P,Potamianos A. On the Effects of Fil- terbank Design and Energy Computation on Robust Speech Recog-nition[J]. IEEE Transactions on Audio Speech and Lan- guage Processing, 2011,19(6) : 1504-1516.
  • 10Tu C-C,Juang C-F. Recurrent type-2 fuzzy neural network using Haar wavelet energy and entropy features for speech detection in noisy environments [J]. Expert Systems With Applications, 2012,39 (3): 2479-2488.

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部