期刊文献+

广义五阶KdV方程的Hamilton对称性与局部守恒律 被引量:1

Exploring Symmetry and Local Conservation Laws of Generalized Fifth Order KdV Equation
下载PDF
导出
摘要 基于Hamilton空间体系下的多辛降阶理论构造了广义五阶KdV方程的一阶对称形式,随后证明了该对称形式是多辛的,最后应用多辛理论研究了广义五阶KdV方程的多种局部守恒律,为高阶发展方程的固有几何性质研究提供了新的途径。 Aim. Many special properties of the evolution equations are derived from their symmetry as well as from their local conservation laws. We now utilize the developing theory of muhi-symplecticity to study the inner properties of the generalized fifth order KdV equation. Sections 1 and 2 of the full paper explain our explorative research in some detail. In addition to briefing past research, the core of section 1 is that we derive eq. (9) as the first order symmetric form for the generalized fifth order KdV equation by introducing the momentum series eq. (7). The core of section 2 consists of: (1) we prove that the symmetric form eq. (9) satisfies the multi-symplectic conservation law eq. (10) recurring to the outer product; (2) using the muhi-symplectic theory, we derive the local energy con- servation law eq. (17) and the local momentum conservation law eq. (19) ; they express the local properties of the generalized fifth order KdV equation. The results of this paper appear to allow studying the geometric properties of the high order evolution equation in a new way.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第4期594-597,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(10972182 11002115和10972125) 111引智计划(B07050) 航空科学基金(2010ZB53021) 西北工业大学基础研究基金(JC200938) 高校博士点基金(20106102110019) 机械系统与振动国家重点实验室开放课题(MSV-2011-21) 大连理工大学工业装备结构分析国家重点实验室开放基金(GZ0802)资助
关键词 广义五阶KDV方程 局部守恒律 对称性 energy conservation, geometry, generalized fifth order KdV equation, symmetry
  • 相关文献

参考文献2

二级参考文献43

  • 1Kawahara T 1972 J. Phys. Soc. Japan 33 260
  • 2Bridges T J and Derks G 2002 SIAM J. Math. Anal. 33 1356
  • 3Wazwaz A M 2003 Appl. Math. Comput. 145 133
  • 4Wazwaz A M 2007 Phys. Lett. A 360 588
  • 5Cui S B and Tao S P 2005 J. Math. Anal. Appl. 304 683
  • 6Cui S B and Tao S P 2006 Acta Mathematica Sinica- English Series 22 1457
  • 7Elgarayhi A 2005 Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences 60 139
  • 8Zhang D 2005 Chaos, Solitons and Fractals 25 1155
  • 9Haragus M, Lombardi E and Schee A 2006 J. Math. Fluid Mecha. 8 482
  • 10Zhang Y and Chen D Y 2004 Chin. Phys. 13 1606

共引文献7

同被引文献11

  • 1赵小山,徐伟.广义五阶KdV方程的新的周期波解与孤立波解[J].西南民族大学学报(自然科学版),2007,33(3):464-468. 被引量:8
  • 2You F C. Zhang J. Zhang J B. The N-soliton solutions of the fifth-order KdV equation under Bargmann constraint[J]. Appl Math Comp, 2010, 217: 1321-1333.
  • 3Alvaro H Salas, Cesar A Gomez. Computing exact solutions for some fifth KdV equations with forcing term[J]. Appl Math Comp, 2008, 204: 257-260.
  • 4谷超豪,胡和生,周子翔.孤立子理论中的Darboux变换及其几何应用[J].上海:上海科技出版社,1999.
  • 5庞小峰.孤立子物理学[J].四川:四川科学技术出版社,2003.
  • 6Meng D X, Gao Y T. Solitonic solution for a variable-coefficient variant Boussinesq system in the long gravity waves[J]. Appl Math Comp, 2009, 215: 1744-1751.
  • 7Wang M L. Solitary wave solution for variant Boussineq equations[J]. Phys Lett A,, 1995, 199: 169- 172.
  • 8Tian B. New families of exact solutions to the integrable dispersive long wave equations in (2+1) dimensional space[J]. J Phs A Math Gen, 1996, 29: 2895-2903.
  • 9姚敏,刘正荣.一类广义五阶KdV方程新的精确解[J].西南民族大学学报(自然科学版),2009,35(5):981-988. 被引量:1
  • 10孙福伟,高伟.广义五阶KdV模型的多孤立子及其应用[J].北方工业大学学报,2010,22(3):56-61. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部