期刊文献+

求解TSP问题的最近邻域与插入混合算法 被引量:25

Hybrid algorithm of the nearest neighbor and insertion for the traveling salesman problem
原文传递
导出
摘要 研究了求解旅行商问题(TSP)的构建型启发式算法中的最近邻域算法和插入算法的特点,集最近邻域算法求解速度快、插入算法求解质量高的优点,提出了一种最近邻域与插入混合算法.分析了混合算法的合理性、复杂度及参数取值,并分别采用以上三种算法求解了TSPLIB标准库中多个算例,结果表明混合算法的求解速度接近最近邻域算法,对城市数量小于1000的小规模TSP问题的求解质量与插入算法相当,而对大规模TSP问题的求解质量明显优于插入算法. This paper presented a new hybrid construction heuristic algorithm(NNIN) -combination of the nearest neighbor algorithm(NN) and the insertion algorithm(IN),based on analyzing properties of NN and IN algorithm for solving the traveling salesman problem(TSP).Moreover,we studied the rationality, complexity,parameter setting of the hybrid algorithm and solved many benchmark instances from TSPLIB using NN,NNIN,IN algorithm respectively.Computational results show that NNIN algorithm whose running time is close to NN can yield solutions as good as IN for small TSP(the number of city is less than one thousand) and better solutions for large TSP than IN,and prove that the efficiency and effectiveness of the proposed hybrid algorithm outperform both NN algorithm and IN algorithm.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第8期1419-1428,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70571008) 辽宁省自然科学基金(20062184)
关键词 旅行商问题 混合算法 最近邻域算法 插入算法 traveling salesman problem the hybrid algorithm the nearest neighbor algorithm the insertion algorithm
  • 相关文献

参考文献2

二级参考文献14

  • 1Dorigo M,Stutzle T.Ant Colony Optimization[M].MIT Press,Cambridge,MA,2004.
  • 2Dorigo M,Blum C.Ant colony optimization theory:A survey[J].Theoretical Computer Science,2005,344:243-278.
  • 3Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Trans Evolutionary Computation,1997,1 (1):53-66.
  • 4Talbi E G,Roux O,Fonlupt C,et al.Parallel ant colonies for the quadratic assignment problem[J].Future Generation Computer Systems(FGCS).2001,17(4):441-449.
  • 5Bullnheimer B,Hartl R F,Strauss C.An improved ant system algorithm for the vehicle routing problem[R].Ann Oper Res,1999,89:319-28.
  • 6Bell J E,McMullen P R.Ant colony optimization techniques for the vehicle routing problem[J].Advanced Engineering Informatics,2004,18(1):41-48.
  • 7McMullen P R.An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives[J].Artificial Intelligence in Engineering,2001,15(3):309-317.
  • 8Ahn S H,Lee S G,Chung T C.Modified ant colony system for coloring graphs[A].Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia[C],2003,3(15-18):1849-1853.
  • 9Shelokar P S,Jayaraman V K,Kulkarni B D.An ant colony classifier system:Application to some process engineering problems[J].Computers and Chemical Engineering,2004,28(9):1577-1584.
  • 10Thomas S,Holger H H.Max-Min ant system[J].Future Generation Computer Systems(FGCS),2000,16(8):889-914.

共引文献10

同被引文献307

引证文献25

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部