期刊文献+

一类五阶时滞差分方程渐近稳定性

Asympotic Stability of a Class of 5-th Order Delay Difference Equations
原文传递
导出
摘要 研究五阶时滞线性差分方程x_(n+5)-ax_n+bx_(n-k)=0,n=0,1,2,…的稳定性,得到了上述方程零解渐近稳定的充要条件,其中a,b是常数,k正整数. In this paper, we will give a necessary and sufficient condition for the zero solution of fifth order delay difference equations of the form xn+5-axn +bxn-k=0, n = 0, 1, 2,… to be asymptotically stable, which is easy to verify and to apply, where a and b are nonzero real constants, k is a positive integer.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第16期201-213,共13页 Mathematics in Practice and Theory
基金 黑龙江省自然科学基金(A0207)
关键词 时滞差分方程 特征方程 渐近稳定 delay difference equation characteristic equation asymptotic stability
  • 相关文献

参考文献5

  • 1Kuruklis S A. The asymptotic stability of xn+1 - axn+ bxn-k = 0[J]. Math Anal Appl, 1994(188): 719-731.
  • 2Hongshan Ren, Stability Analysis of Second Order Delay Difference Equations[J]. Funkcialaj Ekva- cioj, 2007(50): 405-419.
  • 3Yantao Wang and Hongshan Ren, Asymptotic stability of third delay difference equations with two constant coefficients, [J]. Aduance on Biomathematics, Volume II, Proceeding of the 6th coeference of Biomathematics, Liverpool, UK: World Academic press, 2008: 738-739.
  • 4Dannan F M. The Asymptotic Stability of x(n + k) + ax(n) + bx(n - l) = 0[J], Journal of Difference Equations and Applications, 2004, 10(6): 589-599.
  • 5Lakshmikantham V and Donato Trigiante. Theory of difference equations: Numerical methods and applications, Second Edition[M]. Academic Press, New york, 2002: 103-109.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部