期刊文献+

对流项占优问题的MLPG/SUPG方法数值模拟 被引量:1

Numerical simulation of convection-domained problems using MLPG/SUPG method
下载PDF
导出
摘要 在计算对流项占优问题时易产生假扩散,本文把流线型迎风格式应用于MLPG方法中可以减少对流项的影响,通过两个典型例子(旋转流场问题和Brezzi问题)验证该格式的精度与有效性,并与文献中的迎风格式的计算结果进行比较,计算结果表明,该方法能有效地克服假扩散现象,有较好的稳定性和较高的计算精度。 Numerical simulation is very easy to produce false diffusion for convection-domainated problem,Streamline upwind Petrov-Galerkin method(SUPG)is applied in MLPG(Meshless Local Petrov-Galerkin) method to lessen the influence of the convection term.Two cases that have benchmark solutions(rotate flow problem and Brezzi problem) are used to validate the accuracy and efficiency of the present method.The results show that the method can effectively overcome the influence of false diffusion;and compared with other upwind scheme in the literature,the method have very good stability and computational precise.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第4期574-578,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金重点(50636050 21006099) 河南省省院合作项目(092106000013) 科技攻关项目(102102210138) 郑州轻工业学院博士基金(2009BSJJ001)资助项目
关键词 无网格方法 MLPG SUPG 旋转流场问题 Brezzi问题 meshless method MLPG SUPG rotate flow problem Brezzi problem
  • 相关文献

参考文献13

  • 1段庆林,李锡夔.不可压缩Stokes流动的PSPG无网格法[J].计算力学学报,2007,24(2):192-196. 被引量:4
  • 2张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742. 被引量:109
  • 3Mohammadi M H.Stabilized Meshless Local Petrov-Galerkin (MLPG)method for incompressible viscousfluid flows. CMES:Computer Modeling in Engi-neering&Science . 2008
  • 4O?ate E.Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput.Methods Appl.Mech.Engrg . 1998
  • 5H. Lin,S. N. Atluri.Meshless Local Petrov-Galerkin(MLPG) Method for Convection-Diffusion Problems. Computer Modeling in Engineering and Sciences . 2000
  • 6Tezduyar,TE,Osawa,Y.Finite element stabilization parameters computed from element matrices and vectors. Computational Methods in Applied Mathematics . 2000
  • 7Wu X H,Shen S P,Tao W Q.Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems. Computer Modeling in Engineering&Sciences . 2007
  • 8F Brezzi,D Marini,A Russo.Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems. Computational Methods in Applied Mathematics . 1998
  • 9H. Lin,S.N. Atluri.The Meshless Local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations. Computer Modeling in Engineering Sciences CMES . 2001
  • 10Li Z Y,Tao W Q.A new stability-guaranteed second order difference scheme. Numerical Heat Transfer . 2002

二级参考文献134

  • 1张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 2贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 3Cordes L W, Moran B. Treatment of material discontinuity in the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg,1996,139:75-89.
  • 4Zhang X,Lu M W,Wegner J L. A 2-D meshless model for jointed rock structures[J]. Int J Numer Methods Engrg,2000,47(10):1649-1661.
  • 5Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg,1996,139:49-74.
  • 6Organ D, Fleming M, Terry T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency[J]. Comput Mech,1996,18:225-235.
  • 7Smolinski P, Palmer T. Procedures for multi-time step integration of element-free Galerkin methods for diffusion problems[J]. Comput Struct,2000,77:171-183.
  • 8Onate E, Idelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow[J]. Int J Numer Methods Engr,1996,39:3839-3866.
  • 9Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems[J]. Comput Mech, 1998,21:283-292.
  • 10Onate E, Idelsohn S, Zienkiewicz O C, et al. A stabilized finite point method for analysis of fluid mechanics problems[J]. Comput Methods Appl Mech Engrg,1996,139:315-346.

共引文献111

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部