摘要
在计算对流项占优问题时易产生假扩散,本文把流线型迎风格式应用于MLPG方法中可以减少对流项的影响,通过两个典型例子(旋转流场问题和Brezzi问题)验证该格式的精度与有效性,并与文献中的迎风格式的计算结果进行比较,计算结果表明,该方法能有效地克服假扩散现象,有较好的稳定性和较高的计算精度。
Numerical simulation is very easy to produce false diffusion for convection-domainated problem,Streamline upwind Petrov-Galerkin method(SUPG)is applied in MLPG(Meshless Local Petrov-Galerkin) method to lessen the influence of the convection term.Two cases that have benchmark solutions(rotate flow problem and Brezzi problem) are used to validate the accuracy and efficiency of the present method.The results show that the method can effectively overcome the influence of false diffusion;and compared with other upwind scheme in the literature,the method have very good stability and computational precise.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2011年第4期574-578,共5页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金重点(50636050
21006099)
河南省省院合作项目(092106000013)
科技攻关项目(102102210138)
郑州轻工业学院博士基金(2009BSJJ001)资助项目