期刊文献+

基于多分类器融合的语音识别方法研究 被引量:7

Research on multiple-classifiers fusion for speech recognition
下载PDF
导出
摘要 针对语音识别性能提高的问题,提出了一种基于多分类器融合的语音识别方法,该方法使用支持向量机(support vector machine,SVM),RBF神经网络与贝叶斯网络作为成员分类器,根据样本库中抽取的校验集计算各成员分类器的权值,以加权评分的投票策略进行决策融合。实验结果表明,通过多分类器融合的识别结果明显优于单个分类器,该方法是一种有效的语音识别方法,提高了语音识别系统的性能。 Fusion of multiple classifiers can be integrated superiority of the each classifier, and better recognition effect can be achieved. At present, the multi-classifier fusion is a hot topic in pattern recognition. In a speech recognition system, design of the classifier is the key point to the superiority. In this paper, a novel speech recognition approach based on multi-classifier fusion is proposed. SVM, RBF network and bayes net are fused by weighted voting strategy, and the weight is calculated according to the validation sets from sample database. The experiment results show that the performance of multiple-classifiers fusion is better than single classifier, and the method proposed in this paper is effective.
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2011年第4期492-495,共4页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(60773113) 重庆市杰出青年基金(2008BA2041) 重庆邮电大学科研基金(A2009-26) 重庆市计算机网络与通信技术重点实验室开放基金(CY-CNCL-2009-2)~~
关键词 多分类器融合 加权投票 语音识别 支持向量机(SVM) muhiple classifier fusion weight vote speech recognition support vector machine ( SVM )
  • 相关文献

参考文献8

二级参考文献63

  • 1史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 2谷学静,王志良,魏哲华,王超.基于人工心理理论的情感模型构建方法研究[J].微计算机信息,2006,22(02Z):264-266. 被引量:10
  • 3王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 4V Vapnik. The Nature of Statistical Learning Theory [M]. Springer-Verlag, New York, 1995.
  • 5S R Gunn. Support Vector Machines for Classification and Regression [R]. Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton, 1997.
  • 6Zhang Xuegong. Using class-center vectors to build support vector machines [A]. Proceedings of 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing [C]. Madison, WI, USA: 1999.4:3-11.
  • 7Kou Zhenzhen, Xu Jianhua, et al. An Improved Support Vector Machine Using Class-Median Vectors [A]. Proceedings of ICONIP[C]. Shanghai, China: 2001-11. 2:883-887.
  • 8Reynolds D A. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, 2000, 10:19 -41
  • 9Reynolds D A, Rose R C. Robust Text-Independent Speaker Identification Using Gaus,sian Mixture Speaker Models. IEEE Trans onSpeech Audio Process, 1995, 3: 72- 83
  • 10Reynolds D A. An Overview of Automatic Speaker RecognitionTechnology. In: Proc of the International Conference on Acoustics,Speech and Signal Processing (ICASSP'02). Orlando, FL, USA,2002, Ⅳ : 4072 - 4075

共引文献622

同被引文献38

  • 1邬啸,魏延,吴瑕.改进的双隶属度模糊支持向量机[J].重庆师范大学学报(自然科学版),2011,28(5):49-52. 被引量:5
  • 2李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 3王欣,罗代升,王正勇.基于改进谱减算法的语音增强研究[J].成都信息工程学院学报,2007,22(2):201-204. 被引量:12
  • 4孟祥增.多媒体网络教学资源的内容特征提取与搜索研究[J].电化教育研究,2007,28(12):33-37. 被引量:14
  • 5张雄伟.现代语音处理技术及应用[M]北京:机械工业出版社,2003.
  • 6赵力.语音信号处理[M]北京:机械工业出版社,2003.
  • 7I.Katunobu,Y.Mikio,T.Kazuya,M.Tatsuo,K.Tetsunori,S.Kiyohiro,and I.Shuichi. JNAS:Japanese speechcorpus for largevocabulary continuousspeechre cognitionre search[J].Journal of the Acoustical Society of Japan(E),1999,(03):119-206.
  • 8HUNG H, HUANG Y, FRIEDLAND G, et al. Estimating dominance in multi -party meetings using speaker diariza- tion [ J ]. IEEE Transactions on Audio, Speech and Lan- guage Processing, 2011, 19(4) : 847 -860.
  • 9HUANG G, ZHU A, SIEW C. Extreme learning machine theory and applications [ J ]. Elsevier Neuroeomputing, 2006, 70(1 -3): 489-501.
  • 10HUANG G B, WANG D H, LAN Y. Extreme learning ma- chine: A Survey [ J ]. International Journal of Machine Learning and Cybernetics, 2011 (2) : 107 - 122.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部