期刊文献+

综合项目评分和属性的个性化推荐算法 被引量:5

A Personalized Recommendation Algorithm Based on Item Rates and Attributes
下载PDF
导出
摘要 针对传统协同过滤算法存在的数据稀疏性和冷启动问题,提出了一种综合项目评分和属性的个性化推荐算法.该算法在衡量项目相似性时,同时考虑用户评分和项目属性特征,并根据评分数据的实际稀疏情况动态调整两者的影响权重;预测评分时,利用用户对项目属性的偏好度来衡量其对未评分邻居项的喜好程度,并产生最终推荐.基于MovieLens数据集进行的实验结果表明,该算法使得最近邻的确定更加准确,系统推荐质量明显改善. With the problem of data sparsity and cold-start in the traditional collaborative filtering algorithms,a personalized algorithm integrating item rates and attributes is proposed.When measuring the similarity between items,the algorithm takes into account user ratings and item attributes and adjusts the ratio of them for the final similarity according to the spare situation of system ratings.While predicting the score,the user's preference on item attributes is adapted to represent current user's interest on unrated neighborhood items and produce the final recommendation.Experimental results based on MovieLens data set show that the new algorithm makes neighbor recognition more accurately and improves the system recommended quality significantly.
作者 陈志敏 姜艺
出处 《微电子学与计算机》 CSCD 北大核心 2011年第9期186-189,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60673060)
关键词 协同过滤 项目相似性 属性偏好度 冷启动 collaborative filtering item similarity attribute preference cold-start
  • 相关文献

参考文献7

  • 1Schafer J B, Konstan J A, Ried J. E--commerce recommendation applications[J].Data Mining and Knowledge Discovery, 2001, 5(1): 115-153.
  • 2Miha Grcar, Dunja Mladenic, Blaz Fortuna,et al. Data sparsity issues in the collaborative filtering framework [J]. Lecture Notes in Computer Science, 2006(4198): 58--76.
  • 3Herlocker L J, Konstan A J, Riedl T J. Empirical analysis of design choices in neighborhood--based collaborative filtering algorithms[J].Information Retrieval. 2002, 5(4) : 287--310.
  • 4Karypis G. Evaluation of item--based top--N recom- mendation algorithms[C] // Proceedings of the 10th in- ternational conference on information and knowledge mangement. [s. l ] : ACM, 2001 : 247--254.
  • 5邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 6王茜,王均波.一种改进的协同过滤推荐算法[J].计算机科学,2010,37(6):226-228. 被引量:42
  • 7Herlocker L J, Konstan A J, Terveen G L, et al. Evaluating collaborative filtering recommender systems [J].ACM Transactionon Information Systems, 2004, 22 (1) : 5--53.

二级参考文献25

  • 1来纯云,冯丽芳.ICU护士估测气管导管气囊压准确性的研究[J].解放军护理杂志,2004,21(6):23-24. 被引量:20
  • 2赵智,冯卓楠.改进的基于相关相似性的协同过滤推荐算法[J].长春工业大学学报,2006,27(4):354-358. 被引量:2
  • 3郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 4Gong Songiie, Cheng Guanghua. Mining User Interest Change for Improving Collaborative Filtering[C]//Intelligent Information Technology Application 2008. Second International Symposium. Volume 3. Dec. 2008:24-27.
  • 5Xia Weiwei, He Liang, Ren Lei, et al. A new collaborative filtering approach utilizing item's popularity[C]//Industrial Engineering and Engineering Management. IEEE International Conference, Dec. 2008 : 1480-1484.
  • 6Su Xiaoyuan, Khoshgoftaar T M, Greiner R. A Collaborative Filtering Algorithm Based on Variance Analysis of Attributes- Value Preference [C] // IEEE/WlC/ACM International Conference. Volume 1, Dec. 2008 : 633-639.
  • 7Dai Y, Ye Hongwu, Gong Songjie. Personalized Reeornmenda tion Algorithm Using User Demography Information. Knowledge Discovery and Data Mining[C]// Second International Workshop. Jan. 2009 : 100-103.
  • 8Gong Song-jie, Ye Hongwu. Combining Memory - Based and Model-Based Collaborative Filtering in Recommender System [C]//Circuits, Communications and Systems. Pacific-Asia Conference. 2009 : 690 693.
  • 9Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 10Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.

共引文献592

同被引文献42

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部