期刊文献+

矩阵方程A^TXA=B的反中心对称解及其最佳逼近 被引量:1

Anti-centro-symetric Solution of the Matrix Equation A^TXA=B and Its Optimal Approximation
下载PDF
导出
摘要 随着应用的推动,矩阵反问题的研究已经取得了许多进展.反中心对称矩阵在信息论,线性系统理论,线性估计系统理论等领域中有实际应用,而关于反中心对称矩阵的研究,国内外学者已在各个方面取得了突破,其多数方法为广义奇异分解与标准相关分解,详见[1-10].笔者利用矩阵对的商奇异值分解,得到矩阵方程ATXA=B的反中心对称解的充要条件及解的表达式,并研究了最佳逼近问题,给出了该问题有解的充要条件和解的表达式,最后给出了算法. With the application of the promotion, a lot of progress on the matrices has been made.Anti-centro-symetrie matrices have practical applications in information theory and other areas. Scholars havemade a breakthrough of the anti-eentro-symetric matrices on the research, and the methods applied are usually the generalized singular value decompositionand the canonical correlation decomposition, see[ 1-10]. By using the quotient singular value decomposi- tion of matrices this paper derives the necessary and sufficient conditions about the Anti-ceentro-symetric solution of the Matrix Equation ArXA = B and its expression. Its optimal approximation is also discussed, and the necessary and sufficient conditions about this problem is derived. The numerical algorithm is provided at last.
出处 《吉林师范大学学报(自然科学版)》 2011年第3期30-33,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 河南省基础与前沿研究计划项目(102300410233)
关键词 反中心对称矩阵 商奇异值分解 最佳逼近 : anti-centro-symetric matrices quotient singular value decomposition optimal approximation
  • 相关文献

参考文献10

二级参考文献25

共引文献43

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部