期刊文献+

FeCuNbSiB对FeNi/PZT复合结构磁电效应的影响 被引量:1

Influence of high-permeability FeCuNbSiB alloy on magnetoelectric effect of FeNi/PZT laminated composite
原文传递
导出
摘要 构造了FeCuNbSiB/FeNi/PZT磁电复合结构并与FeNi/PZT复合结构进行了对比研究.分析了高磁导率材料FeCuNbSiB对FeNi磁场的影响机理,研究了FeCuNbSiB/FeNi/PZT三相复合结构的磁电效应.实验表明,在FeNi/PZT两相层合结构中黏接FeCuNbSiB层后:1)最优偏置磁场从200Oe降低到55Oe,最大谐振磁电电压系数从1.59V/Oe增大到2.77V/Oe;2)在低偏置磁场中,层合结构磁电电压转换系数提高了1.7—7.8倍;3)层合结构的磁电电压对静态磁场的灵敏度从19.1mV/Oe增大到158.6mV/Oe.三相复合结构磁电效应的这些变化均来自于层合结构端面磁化状态的改变———高磁导率材料相的加入使复合结构的磁化增强. A FeCuNbSiB/FeNi/PZT laminated composite is developed and comparatively studied with a FeNi/PZT laminated composite. The influence of high-permeability FeCuNbSiB alloy on applied DC magnetic field, piezomagnetic coefficient and optimal bias magnetic field of FeNi is investigated. The experimental results show that compared with in the two-phase FeNi/PZT, in the three-phase FeCuNbSiB/FeNi/PZT laminated composite, (i) the optimal bias magnetic field decreases from 200Oe to 55Oe, and the maximum magnetoelectric(ME) voltage coefficient increases from 1.59V/Oe to 2.77V/Oe; (ii) under small bias magnetic field, the ME voltage coefficient increases by a factor of 1.7—7.8; (iii) the sensitivity of the ME voltage coefficient for the laminated composite to a DC magnetic field increases from 19.1mV/Oe to 158.6mV/Oe. The variations in ME effect of three-phase composie result from the enhancement of magnetizetion at end faces, which is generated by introducing the high permeability material phase.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第9期635-640,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10776039,50830202)资助的课题~~
关键词 层合结构 最优偏置磁场 高磁导率 磁电电压转换系数 laminated composite optimum bias magnetic high-permeability magnetoelectric voltage coefficient
  • 相关文献

参考文献4

二级参考文献49

共引文献48

同被引文献11

  • 1O'Handley R C,Huang J K,Bono D C,et al.Improved wireless,transcutaneous power trans- mission for in vivo applications[J].IEEE Sensors Journal,2008,8(1): 57-62.
  • 2Ottman G K,Hofmann H F,Bhatt A C,et al.Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J].IEEE Transactions on Power Electronics,2002,17(5): 669-676.
  • 3Ottman G K,Hofmann H F,Lesieutre A.Optimized piezoelectric energy harvesting circuit using step- down converter in discontinuous conduction mode[J].IEEE Transactions on Power Electronics,2003,18(2): 696-703.
  • 4Tabesh A,Frechette L G.A low-power stand-alone adaptive circuit for harvesting energy rrom a piezoelectric micropower generator[J].IEEE Transactions on Industrial Electronics,2010,57(3): 840-849.
  • 5Lefeuvre E,Audigier D,Richard C,et al.Buck-Boost converter for sensorless power optimization of piezoelectric energy harvester[J].IEEE Transactions on Power Electronics,2007,22(5): 2018-2025.
  • 6Kong N,Dong S H.Low-power design of a self- powered piezoelectric energy harvesting system with maximum power point tracking[J].IEEE Transactions on Power Electronics,2012,27(5): 2298-2308.
  • 7Guyomar D,Badel A,Lefeuvre E,et al.Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2005,52(4): 584-595.
  • 8Badel A,Guyomar D,Lefeuvre E,et al.Piezoelectric energy harvesting using a synchronized switch technique[J].Journal of Intelligent Material Systems and Structures,2006,17(23): 831-839.
  • 9Wu W J,Wickenheiser A M,Reissman T,et al.Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers[J].Smart Materials and Structures,2009,18(5): 4005-4021.
  • 10Shen H,Qiu J,Ji H,et al.Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction[J].Smart Materials and Structures,2010,19(11): 115017-115030.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部