期刊文献+

基于广义离散Morse理论的强关联规则挖掘 被引量:4

Strong-association Rules Mining Based on Generalized Discrete Morse Theory
下载PDF
导出
摘要 针对强关联规则的挖掘问题,提出构造事务数据库的单元复形,利用广义离散Morse理论发现强关联规则的方法。在基本的离散Morse理论和关联规则的基础上延伸得到广义离散Morse理论和强关联规则的定义,通过在事务数据库的单元复形上定义离散Morse函数挖掘强关联规则,例证表明该方法的可行性和高效性。 For the problem of strong-association rules mining,a method is proposed which constructs a cell complex on transaction database and uses generalized discrete Morse theory to find the strong-association rule.It gets the definition of generalized discrete Morse theory and strong-association rule by extending the basic discrete Morse theory and association rule,mining the strong-association rule by defining discrete Morse theory on cell complex of transaction database.Example verifies the feasibility and efficiency of the method.
作者 刘俊 刘希玉
出处 《计算机工程》 CAS CSCD 北大核心 2011年第16期45-47,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60873058) 山东省自然科学基金资助项目(Z2007G03)
关键词 离散Morse理论 拓扑 广义离散Morse函数 广义离散梯度 强关联规则 discrete Morse theory topology generalized discrete Morse function generalized discrete gradient strong-association rule
  • 相关文献

参考文献2

二级参考文献13

  • 1Tang C K, Medioni G. Extremal Feature Extraction from 3-D and Noisy Scalar Fields[C]//Proceedings of IEEE Visualization. [S. l.]: IEEE Press, 1998-10,
  • 2Milnor J. Morse Theory[M]. [S.l.]: Princeton University Press, 1963.
  • 3Edelsbrunner H, Harer J, Natarajan V, et al. Morse-Smale Complexes for Piecewise Linear 3-manifolds[C]//Proc. of the 19th Ann. Sympos. on Comput. Geom. [S. l.]: IEEE Press, 2004.
  • 4Gyulassy A, Natarajan V, Pascucci V, et al. A Topological Approach to Simplification of Three-dimensional Scalar Functions[C]// Proceedings of IEEE VIS'06. [S. l.]: IEEE Press, 2006.
  • 5Floriani L D, Mesmoudi M M, Danovaro E. A Smale-like Decomposition for Discrete Scalar Fields[C]//Proceedings of ICPR'02. [S. l.]: IEEE Press, 2002.
  • 6Lewiner T, Constructing Discrete Morse Functions[J], MS Thesis,2002, 6(6): 44-56,
  • 7Lewiner T, Lopes H, Tavares Ct Applications of Forman's Discrete Morse Theory to Topology Visualization and Mesh Compression[J].IEEE Computer Graphics and Applicaions. 2004, 5(10): 499-508.
  • 8Dey T K, Edesbrunner H, Guha S. Computational Topology[J].Advances in Discrete and Computational Geometry, 1999, 3(6):109-143.
  • 9Lewiner T, Lopes H, Tavares G. Toward Optmality in Discrete Morse Theory[J]. Experimental Math, 2003, 3(12): 271-285.
  • 10Forman R, A Discrete Mores Theory Functions[J]. Advances in Moth,2002, 4(4): 66-78.

共引文献4

同被引文献32

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部