期刊文献+

基于改进遗传RBF神经网络的双电机驱动伺服系统控制 被引量:2

CONTROL OF DUAL-MOTOR DRIVING SERVO SYSTEM BASED ON IMPROVED GENETIC-RBF NEURAL NETWORK
下载PDF
导出
摘要 针对常规遗传算法的缺陷,提出了一种基于改进遗传算法和RBF神经网络相结合的控制方法。该方法对RBF神经网络的隐层中心值和宽度进行了优化,用递推最小二乘法训练隐层和输出层之间的权值。最后在双电机驱动伺服系统中进行了仿真试验,结果表明所提出的控制策略是有效的。 According to the deficiency of conventional genetic algorithm(GA),a new control method based on improved GA which combining with RBF neural network is proposed.The method was used to optimize the centers and widths of RBF hidden layer.Recursion least square method was used to train the weights between hidden layer and output layer.Finally,the simulation experiment in dual-motor driving servo system shows the effectiveness of the proposed control strategy.
作者 赵海波
出处 《井冈山大学学报(自然科学版)》 2011年第4期76-80,共5页 Journal of Jinggangshan University (Natural Science)
基金 安徽省高校自然科学研究项目(KJ2011B186)
关键词 遗传算法 RBF神经网络 双电机驱动 genetic algorithm RBF neural network dual-motor driving
  • 相关文献

参考文献14

  • 1陈庆伟,郭毓,杨静忠.提高齿隙非线性系统精度的应用研究[J].南京理工大学学报,2000,24(6):486-489. 被引量:21
  • 2马艳玲,黄进,张丹.基于反步自适应控制的伺服系统齿隙补偿[J].控制理论与应用,2008,25(6):1090-1094. 被引量:25
  • 3Lagorberg A, Egardt B. Backlash Estimation With Application to Automotive Powertrains.IEEE Transactions on Control Systems Technology,2007,150): 483-493.
  • 4Kashiwagi H,Harada H,Toyozawa Y.Identificatinn of nonlinear mechatronic servo system having backlash[J]. SICE 2004 Ann-ual Conference,2004,1:384-387.
  • 5Gawronski W, Beech-Brandt J J, Ahlstrom H G, et al. Torque-bias Profile for Improved Tracking of the Deep Space Network Antennas[C]. IEEE on Antennas & Propagation,2000,42(6):35-45.
  • 6Chang Sunlai,Tsai Lungwen.On the Redundant-drive Backlash-free Robotic Mechanisms [J].Journal of Mechanical Design,1993,115:115-246.
  • 7Grundelius M, Angeli D.Adaptive control of systems with backlash acting on the input[C].IEEE Proceedings on Decision and Control. 1996,4:4689-4694.
  • 8Tao G,Ma X, Ling Y. Optimal and nonlinear control of systems with sandwiched bacldas-h[J]. Automatica,2001, 37(2):165-176.
  • 9宋清昆,姜雷,郝敏.基于改进遗传算法的模糊神经网络控制[J].电机与控制学报,2005,9(6):617-620. 被引量:7
  • 10张明君,张化光.遗传算法优化的RBF神经网络控制器[J].电机与控制学报,2007,11(2):183-187. 被引量:19

二级参考文献49

共引文献129

同被引文献20

  • 1刘云峰,缪栋,刘凡军.1553B总线及其在电液伺服系统中的应用[J].机床与液压,2004,32(9):106-108. 被引量:15
  • 2刘根旺,许化龙.导弹姿态控制伺服系统的变结构控制[J].上海航天,2004,21(6):15-17. 被引量:5
  • 3王杰,林忠万,李玉忍.新型多模态PID控制算法在高精度位置伺服系统中的应用[J].电气传动,2005,35(3):33-35. 被引量:6
  • 4张明君,张化光.遗传算法优化的RBF神经网络控制器[J].电机与控制学报,2007,11(2):183-187. 被引量:19
  • 5贺伸雄.模糊数学及其应用[M].天津:天津科学技术出版社,1983.
  • 6Michael C A, Safacas A N. Dynamic and vibration analysis of a multimotor DC drive system with elastic shafts driving a tissue pa- per machine [ J ]. IEEE Transactions on Industrial Electronics, 2007,54(4) :2033-2046.
  • 7Abjadi N R, Soltani J,Askari J, et al. Nonlinear sliding-mode con- trol of a multi-motor web-winding system without tension sensor[J]. lET Control Theory & Applications ,2009,3 (4) :419-427.
  • 8Kim J, Park C, Hwang S, et al. Control algorithm for an independ- ent motor - drive vehicle [ J ]. IEEE Transactions on Vehicular Technology,2010,59 (7) :3213-3222.
  • 9Ben M W,Belhadj J,Pietrzak-David M. Sliding mode observer for mono-inverter bi-motors railway traction system [ C ]//Sth Inter- national Multi- Conference on Systems, Signals and Devices (SSD). 2011 : 1-6.
  • 10Yu D C, Liu F, Lai P Y, et al. Nonlinear dynamic compensation of sensors using inverse- model- based neural network [ J ]. IEEE Transactions on Instrumentation and Measurement ,2008,57 (10) : 2364 -2376.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部