期刊文献+

Evaluation of Thermal Barrier Coatings Exposed to Hot Corrosion Environment by Impedance Spectroscopy 被引量:6

Evaluation of Thermal Barrier Coatings Exposed to Hot Corrosion Environment by Impedance Spectroscopy
原文传递
导出
摘要 In this investigation, impedance spectroscopy (IS) is used, as a non-destructive tool, to examine the hot corrosion behavior of thermal barrier coatings (TBCs) exposed to a mixture of 25wt% NaCl and 75wt% Na2SO4. The results show that the thermally grown oxide (TGO) formed along the top coat/bond coat interface is a mixed oxide layer, i.e. Cr2O3, (Ni, Co)(Cr, Al)2O4 spinel and NiO. The growth of TGO layer appears to follow the parabolic law. The resistance of TGO increases due to the increase of thickness when the number of cycles is less than 110. While for more than 110 cycles, the resistance of TGO decreases with the increase of porosity of TGO layer, even though the thickness of TGO layer increases. The nucleation and propagation of cracks within top coat increase the electrical resistance of top coat. The parameters in equivalent circuit could be used to characterize the degradation of TBCs. In this investigation, impedance spectroscopy (IS) is used, as a non-destructive tool, to examine the hot corrosion behavior of thermal barrier coatings (TBCs) exposed to a mixture of 25wt% NaCl and 75wt% Na2SO4. The results show that the thermally grown oxide (TGO) formed along the top coat/bond coat interface is a mixed oxide layer, i.e. Cr2O3, (Ni, Co)(Cr, Al)2O4 spinel and NiO. The growth of TGO layer appears to follow the parabolic law. The resistance of TGO increases due to the increase of thickness when the number of cycles is less than 110. While for more than 110 cycles, the resistance of TGO decreases with the increase of porosity of TGO layer, even though the thickness of TGO layer increases. The nucleation and propagation of cracks within top coat increase the electrical resistance of top coat. The parameters in equivalent circuit could be used to characterize the degradation of TBCs.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期514-519,共6页 中国航空学报(英文版)
关键词 thermal barrier coatings hot corrosion impedance spectroscopy CRACK mixed oxide thermal barrier coatings hot corrosion impedance spectroscopy crack mixed oxide
  • 相关文献

参考文献25

  • 1Gurrappa I, Rao A S. Thermal barrier coatings for en- hanced efficiency of gas turbine engines. Surface and Coatings Technology 2006; 201 (6): 3016-3029.
  • 2Xu Z H, Mu R D, He L M, et al. Effect of diffusion barrier on the high-temperature oxidation behavior of thermal barrier coatings. Journal of Alloys and Com- pounds 2008; 466(1-2): 471-478.
  • 3Zhou C G, Wang C L, Song Y X. Evaluation of cyclic oxidation of thermal barrier coatings exposed to NaCl vapor by finite element method. Materials Science and Engineering A 2008; 490(1-2): 351-358.
  • 4Selcuk A, Atkinson A. The evolution of residual stress in the thermally grown oxide on Pt diffusion bond coats in TBCs. Acta Materialia 2003; 51 (2): 535-549.
  • 5Nychka J A, Clark D R, Sridharan S. NDE assessment of TBCs: an interim report of a photo-stimulated lumi- nescence 'round-robin' test. Surface and Coatings Technology 2003; 163-164: 87-94.
  • 6Ma X Q, Takemoto M. Quantitative acoustic emission analysis of plasma sprayed thermal barrier coatings subjected to thermal shock tests. Materials Science and Engineering A 2001; 308(1-2): 101-110.
  • 7Kucuk A, Berndt C C, Senturk U, et al. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: Acoustic emis- sion response. Materials Science and Engineering A 2000; 284(1-2): 41-50.
  • 8Ogawa K, Minkov D, Shoji T, et al. NDE of degrada- tion of thermal barrier coating by means of impedance spectroscopy. NDE & International 1999; 32(3): 177- 185.
  • 9Song S H, Xiao P, Weng L Q. Evaluation of micro- structural evolution in thermal barrier coatings during thermal cycling using impedance spectroscopy. Journal of the European Ceramic Society 2005; 25(7): 1167- 1173.
  • 10Wang X, Mei J F, Xiao P. Non-destructive evaluation of thermal barrier coatings using impedance spectros- copy. Journal of the European Ceramic Society 2001; 21(7): 855-859.

同被引文献70

  • 1徐滨士,李长久,刘世参,马世宁.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,11(1):3-9. 被引量:125
  • 2张春霞,宫声凯,徐惠彬.交流阻抗谱法在热障涂层失效研究中的应用[J].航空学报,2006,27(3):520-524. 被引量:4
  • 3简中华,王富耻,曹素红.ZrO_2热障涂层耐高温冲刷性能研究[J].新技术新工艺,2006(7):66-68. 被引量:2
  • 4杨丽,周益春.Wavelet analysis of acoustic emission signals from thermal barrier coatings[J].中国有色金属学会会刊:英文版,2006,16(B01):270-275. 被引量:2
  • 5GURRAPPA I, RAO A S. Thermal barrier coatings for en- hanced efficiency of gas turbine engines[J]. Surface & Coat- ings Technology, 2006, 201(6): 3016-3029.
  • 6NI L Y, LIU C, ZHOU C G. A life prediction model of thermal barrier coatings[J]. International Journal of Modem Physics B, 2010, 24(15/16): 3161-3166.
  • 7BUSSO E P, LIN J, SAKURAI S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Lifeprediction model[J]. Acta Materialia, 2001, 49(9): 1529-1536.
  • 8VABEN R, KERKHOFF G, STOVER D. Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings[J]. Materials Science and Engineer- ing A, 2001, 303(1/2): 100-109.
  • 9SHEN W, WANG F C, FAN Q B. Lifetime prediction of plasma-sprayed thermal barrier coating systems[J]. Surface & Coatings Technology, 2013, 217: 39-45.
  • 10SCHWARZER J, LOHE D, VOHRINGER O. Influence of the TGO creep behavior on delamination stress development in thermal barrier coating systems[J]. Materials Science and Engineering A, 2004, 387-389: 692-695.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部