期刊文献+

高铁酸钾氧化降解三氯生的动力学模拟及反应机制研究 被引量:13

Kinetics Modeling and Reaction Mechanism of Ferrate(Ⅵ) Oxidation of Triclosan
原文传递
导出
摘要 对高铁酸钾氧化降解水中微量三氯生(TCS)的反应动力学、反应机制及降解效果进行了实验研究.结果表明,高铁酸钾氧化降解TCS符合二级反应动力学模式,pH 8.5时表观二级反应动力学速率常数为531.9 L.(mol.s)-1,以10 mg.L-1的高铁酸钾计算,反应的半衰期是25.8 s.表观二级反应动力学速率常数随着pH值的增加逐渐降低,这种趋势可由高铁酸钾的各形态分布和TCS的酸碱解离常数来进行模拟.HFeO 4-与TCS的非解离态和解离态的反应速率常数分别为(4.1±3.5)×102L.(mol.s)-1和(1.8±0.1)×104 L.(mol.s)-1,且HFeO 4-与解离态TCS的反应占主导作用.线性自由能关系表明其反应机制为亲电氧化反应,反应的初始步骤是HFeO 4-亲电攻击TCS的酚羟基.当n[Fe(Ⅵ)]∶n(TCS)>7∶1时,TCS完全去除,低浓度的腐殖酸有助于提高高铁酸钾氧化降解TCS的速率.因此,高铁氧化技术是一种极具应用前景的新型水处理技术. Triclosan(TCS) is a broad-spectrum antibacterial agent widely used in many personal care products.We investigated oxidation of TCS by aqueous ferrate Fe(Ⅵ) to determine reaction kinetics,interpreted the reaction mechanism by a linear free-energy relationship,and evaluated the degradation efficiency.Second-order reaction kinetics was used to model Fe(Ⅵ) oxidation of TCS,with the apparent second-order rate constant(kapp) being 531.9 L·(mol·s)-1 at pH 8.5 and(24±1) oC.The half life(t1/2) is 25.8 s for an Fe(Ⅵ) concentration of 10 mg·L-1.The rate constants of the reaction decrease with increasing pH values.These pH-dependent variations in kapp could be distributed by considering species-specific reactions between Fe(Ⅵ) species and acid-base species of an ionizable TCS.Species-specific second-order reaction rate constants,k,were determined for reaction of HFeO-4 with each of TCS's acid-base species.The value of k determined for neutral TCS was(4.1±3.5)×102 L·(mol·s)-1,while that measured for anionic TCS was(1.8±0.1)×104 L·(mol·s)-1.The reaction between HFeO-4 and the dissociated TCS controls the overall reaction.A linear free-energy relationship illustrated the electrophilic oxidation mechanism.Fe(Ⅵ) reacts initially with TCS by electrophilic attack at the latter's phenol moiety.At a n∶n(TCS)〉7∶1,complete removal of TCS was achieved.And lower concentration of the humic acid could enhance the kapp of Fe(Ⅵ) with TCS.In conclusion,Fe(Ⅵ) oxidation technology appears to be a promising tool for applications of WWTPs effluents and other decontamination processes.
出处 《环境科学》 EI CAS CSCD 北大核心 2011年第9期2543-2548,共6页 Environmental Science
基金 国家水体污染控制与治理科技重大专项(2009ZX07528-001) 国家杰出青年科学基金项目(40688001) 国家自然科学基金项目(40821003) 有机地球化学国家重点实验室项目(sklog2009A02)
关键词 高铁酸钾 三氯生 氧化 二级反应动力学 线性自由能关系 ferrate(Ⅵ) triclosan(TCS) oxidation second-order reaction kinetics linear free-energy relationship
  • 相关文献

参考文献25

  • 1Ying G G, Kookana R S. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants [ J ]. Environment International, 2007, 33(2) : 199-205.
  • 2Zhao J L, Ying G G, Liu Y S, et al. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment [ J]. Journal of Hazardous Materials, 2010, 179 ( 1-3 ) : 215-222.
  • 3Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata [ J ]. Environmental Toxicology and Chemistry, 2008, 27(5) : 1201-1208.
  • 4Lindstrom A, Buerge I J, Poiger T, et al. Occurrence and environmental behavior of the bactericide tficlosan and its methyl derivative in surface waters and in wastewater [ J ]. Environmental Science & Technology, 2002, 36 ( 11 ) : 2322- 2329.
  • 5Latch D E, Packer J L, Stender B L, et al. Aqueous photochemistry of triclosan : Formation of 2,4-dichlorophenol, 2, 8-dichlorodibenzo-p-dioxin, and oligomerization products [ J ]. Environmental Toxicology and Chemistry, 2005, 24 ( 3 ) : 517- 525.
  • 6Tixier C, Singer H P, Canoniea S, et al. Phototransformation of triclosan in surface waters: A relevant elimination process for this widely used biocide-Laboratory studies, field measurements, and modeling [ J]. Environmental Science & Technology, 2002, 36 (16) : 3482-3489.
  • 7Orvos D R, Versteeg D J, Inauen J, et at. Aquatic toxicity of triclosan [ J ]. Environmental Toxicology and Chemistry, 2002, 21(7) : 1338-1349.
  • 8Sharma V K. Oxidation of nitrogen-containing pollutants by novel ferrate ( V[ ) technology : A review [ J ]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2010, 45 (6) : 645-667.
  • 9Lee Y, Cho M, Kim J Y, et al. Chemistry of ferrate ( Fe( VI ) ) in aqueous solution and its applications as a green chemical [ J]. Journal of Industrial and Engineering Chemistry, 2004, 10 ( 1 ) : 161-171.
  • 10Jiang J Q. Research progress in the use of ferrate ( VI ) for the environmental remediation [ J ]. Journal of Hazardous Materials, 2007, 146(3) : 617-623.

同被引文献162

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部