期刊文献+

基于改进样板去噪源分离的轴承复合故障诊断 被引量:5

Bearing Multi-fault Diagnosis Based on Improved Template Denoising Source Separation
下载PDF
导出
摘要 环境噪声处理不当或者传感器数目少于故障数目都可能导致基于源分离的复合故障诊断失败,针对此问题,提出了基于改进样板去噪源分离的诊断方法并用于轴承复合故障诊断。该方法首先对数据进行移动独立分量分析,然后将得到的独立成分作为输入样板进行样板去噪源分离。轴承复合故障的仿真和实验数据分析证明,该方法能够在未知噪声环境下完成传感器数目少于故障数目的欠定源分离,该方法对轴承复合故障诊断是有效的。 Processing noise improperly or the number of sensors less than the numner of faults may lead to failure of multi-fault diagnosis based on source separation.Improved template denoising source separation was proposed and used to diagnose multi-fault of bearings.Shift independent component analysis was carried out first and the independent components obtained were used as templates to the template denoising source separation algorithm.The proposed method can separate source signals through underdetermined source under reverberant environments and diagnose multi-fault of bearings.The effectiveness was verified by both simulated and experimental anlysis.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第17期2080-2084,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51075330 50975231)
关键词 复合故障 改进样板去噪源分离 轴承 欠定源分离 multi-fault improved template denoising source separation bearing underdetermined source separation
  • 相关文献

参考文献8

  • 1Jing Jianping, Meng Guang. A Novel Method for Multi--fault Diagnosis of Rolor System[J]. Mecha- nism and Machine Theory,2009, 44: 697-709.
  • 2焦卫东,杨世锡,吴昭同.基于独立分量分析的噪声消除技术研究[J].浙江大学学报(工学版),2004,38(7):872-876. 被引量:31
  • 3吕勇,李友荣,肖涵,王志刚.基于降噪及独立分量分析的轴承故障声信号特征提取[J].武汉科技大学学报,2008,31(1):91-94. 被引量:5
  • 4李志农,范涛,刘立州,卢纪富.基于变分贝叶斯理论的机械故障源盲分离方法研究[J].振动与冲击,2009,28(6):12-16. 被引量:12
  • 5Karp E, Parkkonen L,Vigario R. Denoising Single Trial Event Related Magnetoeneephalographic Re cordings[C]//Independent Component Analysis and Signal Separation, 10th Conference ICA 2009. New York: Springer, 2009, LNCS 5441 : 427-434.
  • 6Morup M, Madsen K H, Hansen L K. Shifted In- dependent Component Analysis [C]//Independent Component Analysis and Signal Separation, 7th Conference ICA 2007. New York: Springer, 2007, LNCS 4666 : 89-96.
  • 7Sarela J, Valpola H. Denoising Source Separation [J]. Journal of Machine Learning Research, 2005,6 (1) :233-272.
  • 8Ypma A. Learning Methods for Machine Vibration Analysis and Health Monitoring [D]. Delft: Delft University of Technology,2001.

二级参考文献22

  • 1李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 2Tian X H,Lin J,Fyfe K R,et al.Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering[C].Proceedings of 2003 IEEE International Conference on Acoustics,Speech,and Signal Processing,2003,2(6-10):245-248.
  • 3Rivet B,Vigneron V,Paraschiv-Ionescu A,et al.Wavelet de-noising for blind source separation in noisy mixtures[J].Lecture notes in computer science,2004,3195:263-270.
  • 4Paraschiv-Ionescu A,Jutten C,Aminian K,et al.Wavelet denoising for highly noisy source separation[J].2002 IEEE International Symposium on Circuits and Systems (ISCAS 2002),201-204(26-29):2002.
  • 5Choudrey R A,Roberts S J.Flexible Bayesian independent component analysis for blind source separation[C].Proceedings of ICA-2001,San Diego,USA,2001.
  • 6Choudrey R A.Variational methods for Bayesian independent component analysis[D].University of Oxford,2002.
  • 7Miskin J W.Ensemble learning for independent component analysis[D].UK:University of Cambridge,2000.
  • 8Jordan M I,Ghahramani Z,Jaakkola T S.An introduction to variational methods in graphical models[J],MachineLearning,1999,37(2):183-233.
  • 9Cardoso J F,Souloumiac A.Blind beamforming for non-Gaussian signals[J],Radar and Signal Processing,IEE Proceedings F,1993,140(6):362 -370.
  • 10LYON R H. Machinery noise and diagnostics [M].Boston : Butterworths Press, 1987: 236 - 243.

共引文献43

同被引文献55

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部