期刊文献+

基于趋势分析的焦炉加热燃烧过程工况辨识 被引量:1

Trend analysis based fuzzy operating-state identification for combustion process of coke ovens
下载PDF
导出
摘要 基于趋势分析方法,研究了焦炉加热燃烧过程工况辨识方法。通过分析焦炉加热燃烧过程工艺,建立了包括单个炭化室工况辨识和焦炉加热燃烧过程工况辨识的信息融合总体结构。基于趋势分析方法分析安装在焦炉上升管的热电偶数据的一致性和可靠性,提取特征点,采用专家规则对各个炭化室的数据进行分析,辨识单个炭化室的工况;对单个炭化室的输出空间进行整理、分类,作为焦炉加热燃烧过程工况识别的输入空间,采用模糊信息融合的方法进行信息融合,得出焦炉加热燃烧过程的实时工况。仿真分析验证了所提方法的有效性。 Based on trend analysis, an operating-state identification method for combustion process of coke ovens was studied. The mechanism of coking process was analyzed and the information fusion structure was presented, which consisted of identification of coking chamber operating-state and identification of combustion process operating-state. The trend analysis method was adopted to judge if the temperature acquired from thermocouples installed in the rising pipe could be used to judge the operative-state of coking chambers, and then, feature points were extracted, and the expert rules were used to identify the operative-state in single coking chambers. And finally, the out- puts of single coking chambers were arranged and classified as inputs of operating-state identification of combustion process. And the information was fused with the fuzzy method to get the operative-state of the combustion process of a coke oven. The simulation results prove the effectiveness of the proposed method.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第8期879-885,共7页 Chinese High Technology Letters
基金 863计划(2008AA042902)资助项目.
关键词 加热燃烧过程 趋势分析 模糊信息融合 工况辨识 combustion process trend analysis fuzzy information fusion operative-stated identification
  • 相关文献

参考文献13

二级参考文献37

共引文献60

同被引文献19

  • 1中商情报网.2012年全年中国焦炭产量数据[EB/OL].(2012-11-06)[2013-03-20].http://www.askci.com/news/201303/20/201437081718.shtml.
  • 2Jose C, Jesus P. Online monitoring of batch processes using multi-phase principal component analysis[ J]. Journal of Process Control, 2006, 16 (10) : 1021 -1035.
  • 3Hu K, Yuan J Q. Batch process monitoring with tensor faetorization[J]. Journal of Process Control, 2009, 19(2) : 288 -296.
  • 4Ma M D, Wong D S H, Jang S S, et al. Fault detection based on statistical multivariate analysis and microarray visualization[ J]. IEEE Transac- tions on Industrial Informatics, 2010, 6( 1 ) : 18 -24.
  • 5Hong J J, Zhang J. Progressive PCA modeling for enhanced fault diagnosis in a batch process [ C ]//International Conference on Control, Automa- tion and Systems. Piscataway, NJ, USA: IEEE, 2010:713 -718.
  • 6Sun W, Meng Y, Ahmet P, et al. A method for muhiphase batch process monitoring based on auto phase identification[J]. Journal of Process Control, 2011, 21(4): 627-638.
  • 7Jia M X, Qiao S Y, Lan Q. A real-time fault monitoring and diagnosis for batch process based on dynamic principal component analysis [ C ]// Chinese Control and Decision Conference. Piscataway, NJ, USA : IEEE, 2012 : 2939 - 2943.
  • 8Huang J Y, Pan H X, Bi S H. Bispectrum entropy feature extraction and its application for fault diagnosis of gearbox[ C]//IEEE International Conference on Fuzzy Systems. Piseataway, NJ, USA: IEEE, 2010:1 -6.
  • 9Jin J L, Shen R, Zhang M, et al. Uncertain decision-making analysis method based on information entropy principles[ C]//Chinese Control and Decision Conference. Piseataway, NJ, USA : IEEE, 2009 : 2241 - 2246.
  • 10Shi L F. Entropy based fuzzy comprehensive evaluation of university teachers[ C ]//First International Conference on Pervasive Computing, Sig- nal Processing and Applications. Piscataway, NJ, USA : IEEE, 2010 : 475 - 478.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部