期刊文献+

油液在线监测系统中的磨粒图像处理 被引量:6

Wear particle image processing for oil on-line monitoring system
下载PDF
导出
摘要 为了提高油液污染度分析和磨粒识别的准确率,在对油液在线监测系统中的磨粒图像特点深入分析的基础上,给出了磨粒图像处理和目标提取的主要流程;分析了磨粒图像模糊退化模型,研究了基于微分图像自相关的磨粒图像模糊尺度计算方法;提出了基于差值图像粗分割和Otsu算法相结合的磨粒图像分割方法。实例分析结果表明:提出的方法对磨粒图像处理效果较好。利用颗粒计数器和铁谱分析系统分别对油液在线监测系统的检测性能进行了检验,结果表明:系统的油液污染度分析和磨粒识别准确率均达到95%以上,具有较高的检测精度,满足磨粒在线监测要求。 To improve the accurate rates of oil contamination level analysis and wear particle recognition, the main process of wear particle image processing and object extraction is given on the basis of analysis of image characteristics of oil on-line monitoring system. The degrading module of the blurred wear particle image is analyzed. The method on the blur parameters calculation of the blurred wear particle image based on difference and autocorrelation is studied. The wear particle image segmentation method based on oil background image and Otsu is proposed. The results of the examples show that the proposed methods are fit for the wear particle image processing. The system performance is tested by particle counter and the ferrography technology respectively. The results show that the accurate rates of oil contamination level analysis and wear particle recognition are higher than 95 %. This system has high detection precision and can meet the demand of wear particle on-line monitoring.
出处 《传感器与微系统》 CSCD 北大核心 2011年第9期37-40,43,共5页 Transducer and Microsystem Technologies
基金 江苏高校优势学科建设工程资助项目 南京林业大学高学历人才基金资助项目(B2010-31)
关键词 磨粒 在线监测 模糊尺度 OTSU wear particle on-line monitoring blur extent Otsu
  • 相关文献

参考文献9

  • 1Roylance B J. Ferrography-Then and now [ J ]. Tribology Inter- national ,2005,38 ( 10 ) :857 -862.
  • 2Xiao H L. The development of ferrography in China-Some personal reflections [ J ]. Tribology International, 2005,38 ( 10 ) : 904 -907.
  • 3Morris S, Wood R J K, Harvey T J, et al. Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contacts [J]. Journal of Tribology, 2002,124 ( 2 ) : 288 - 296.
  • 4Yitzhaky Y, Kopeika N S. Identification of motion blur for image restoration [ J ]. Graphical Models and Image Processing, 1997, 59 (5) :310 -320.
  • 5张德丰,张葡青.维纳滤波图像恢复的理论分析与实现[J].中山大学学报(自然科学版),2006,45(6):44-47. 被引量:18
  • 6Lokhande R, Arya K V, Gupta P. Identification of parameters and restoration of motion blurred images[ C ]//Proc of the ACM Symp on Applied Computing, Dijon : ACM Press ,2006:301 -305.
  • 7Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Trans on Systems, Man and Cybernetic, 1979,9 ( 1 ) : 62 - 66.
  • 8程万胜,臧希喆,赵杰,蔡鹤皋.面向Otsu阈值搜索的PSO惯性因子改进方法[J].光学精密工程,2008,16(10):1907-1912. 被引量:13
  • 9Lee S U, Chung S Y. A comparative performance study of several global thresholding techniques for segmentation [ J ]. Computer Vision, Graphics and Image Processing, 1990,52 : 171 -190.

二级参考文献18

共引文献29

同被引文献87

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部