期刊文献+

RBF神经网络在复合地基承载力预测中的应用 被引量:1

The Application of RBF Neural Network in the Forecast of Bearing Capacity of Composite Foundation
下载PDF
导出
摘要 利用径向基函数(RBF)神经网络,建立复合地基承载力预测模型,有效解决复合地基承载力预测中的非线性问题.以历史数据为依据,对所建立的RBF神经网络预测模型进行模拟和检验.实例结果表明:应用RBF神经网络所建立的复合地基承载力预测模型,能真实地表达要素之间的高度非线性关系,具有较高的预测精度和较强的实际应用价值. The nonlinear problems of bearing capacity of composite foundation for prediction was solved effectively by using radial basis function (RBF) neural network and establishing the forecast of bearing capacity of composite foundation model. According to historical data, we carry out the simulation and experiment of RBF neural network predictive model. The results show that the application of RBF neural network in the forecast of bearing capacity of composite foundation model can truly express between elements of the highly nonlinear relationship, has high accuracy and strong practical value.
出处 《河南科学》 2011年第9期1091-1093,共3页 Henan Science
关键词 RBF神经网络 复合地基 承载力 RBF neural network composite foundation bearing capacity
  • 相关文献

参考文献5

二级参考文献44

共引文献51

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部