摘要
This study examined the role of collapsin response mediator protein 1 (CRMP-1) on neurite outgrowth from rat hippocampal neurons by blocking its function using an antibody. Hippocampal neurons, cultured in vitro, were treated (blocked) using a polyclonal antibody to CRMP-1, and neurite outgrowth and cytoskeletal changes were captured using atomic force microscopy and laser confocal microscopy. Control cells, treated with normal rabbit IgG, established their characteristic morphology and had a large number of processes emerging from the soma, including numerous branches. Microtubules were clearly visible in the soma, formed an elaborate network, and were aligned in parallel arrays to form bundles which projected into neurites. After blocking with CRMP-1 antibody, the number of branches emerging from axons and dendrites significantly increased and were substantially longer, compared with control cells. However, the microtubule network nearly disappeared and only a few remnants were visible. When CRMP-1 antibody-blocked neurons were treated with the Rho inhibitor, Y27632, numerous neurites emerged from the soma, and branches were more abundant than in control neurons. Although the microtubules were not as clearly visible compared with neurons cultured in control medium, the microtubule network recovered in cells treated with Y27632, when compared with cells that were blocked by CRMP-1 antibody (but not treated with Y27632). These results demonstrate that neurite outgrowth from hippocampal neurons can be promoted by blocking CRMP-1 with a polyclonal antibody.
This study examined the role of collapsin response mediator protein 1 (CRMP-1) on neurite outgrowth from rat hippocampal neurons by blocking its function using an antibody. Hippocampal neurons, cultured in vitro, were treated (blocked) using a polyclonal antibody to CRMP-1, and neurite outgrowth and cytoskeletal changes were captured using atomic force microscopy and laser confocal microscopy. Control cells, treated with normal rabbit IgG, established their characteristic morphology and had a large number of processes emerging from the soma, including numerous branches. Microtubules were clearly visible in the soma, formed an elaborate network, and were aligned in parallel arrays to form bundles which projected into neurites. After blocking with CRMP-1 antibody, the number of branches emerging from axons and dendrites significantly increased and were substantially longer, compared with control cells. However, the microtubule network nearly disappeared and only a few remnants were visible. When CRMP-1 antibody-blocked neurons were treated with the Rho inhibitor, Y27632, numerous neurites emerged from the soma, and branches were more abundant than in control neurons. Although the microtubules were not as clearly visible compared with neurons cultured in control medium, the microtubule network recovered in cells treated with Y27632, when compared with cells that were blocked by CRMP-1 antibody (but not treated with Y27632). These results demonstrate that neurite outgrowth from hippocampal neurons can be promoted by blocking CRMP-1 with a polyclonal antibody.
基金
Guangdong Provincial Science and Technology Foundation, No.2010B031600102,2010-170-1
Guangdong Provincial Medical Science Foundation, No. A2008344
Macao Science and Technology Foundation, No.026-2010-A