期刊文献+

Arch-dam crack deformation monitoring hybrid model based on XFEM 被引量:10

Arch-dam crack deformation monitoring hybrid model based on XFEM
原文传递
导出
摘要 An extended finite element method incorporated with the cohesive crack model(CCM-based XFEM) is developed in consideration of crack tip enrichment.It could improve the accuracy and is introduced into dam safety monitoring for the first time.Firstly,the proposed method is verified for a benchmark concrete beam by comparing the results with those of numerical investigations obtained by other researchers.Furthermore,it is adopted as an alternative method for building the deformation hybrid models of non-stable cracks in an arc dam,for the reason that classical FEMs are cumbersome in modeling the cohesive crack growth due to the need of remeshing the moving discontinuities.Case study proves that the fitted results of the mentioned deformation hybrid model,better than the classical statistical model,are well consistent with the measured data and reliable to forecast the development tendency of crack deformation.Therefore,the present CCM-based XFEM could provide a practical way to simulate and monitor the cracking process in concrete arch dam.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第10期2611-2617,共7页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 50879024,50909041) Special Fund of State Key Laboratory of China (Grant Nos. 2009586012,2010585212) the Fun-damental Research Funds for the Central Universities (Grant Nos. 2009B08514,2010B20414)
关键词 XFEM cohesive crack model concrete arch dam hybrid model 大坝安全监测 变形监测 开裂变形 混合模型 基础 裂纹尖端 混合模式 有限元方法
  • 相关文献

参考文献20

  • 1BAO TengFei1’2, PENG Yan1’2, CONG PeiJiang1’2 & WANG JiaLin1’2 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China,2 National Engineering Research Center ofWater Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210024, China.Analysis of crack propagation in concrete structures with structural information entropy[J].Science China(Technological Sciences),2010,53(7):1943-1948. 被引量:9
  • 2方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报(自然科学版),2007,47(3):344-347. 被引量:43
  • 3J. Planas,M. Elices.Asymptotic analysis of a cohesive crack: 2. Influence of the softening curve[J]. International Journal of Fracture . 1993 (3)
  • 4J. Planas,M. Elices.Asymptotic analysis of a cohesive crack: 1. Theoretical background[J]. International Journal of Fracture . 1992 (2)
  • 5Stolarska M,Chopp D L.Modelling crack growth by level sets in theextended finite element method. International Journal for Numerical Methods in Engineering . 2001
  • 6Sukumar N,Prevost J H.Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures . 2003
  • 7Dolbow J,Harari I.An efficient finite element method for embedded interface problems. International Journal for Numerical Methods in Engineering . 2009
  • 8Shi J,Chopp D.Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics . 2010
  • 9Unger J F,Eckardt S,Konke C.Modeling of cohesive crack growth in concrete structures with the extended finite element method. Computational Methods in Applied Mathematics . 2007
  • 10Asferg J L,Poulsen P N,Nielsen L O.A direct XFEM formulation for modeling of cohesive crack growth in concrete. Comput Concrete . 2007

二级参考文献22

  • 1BAO TengFei1 ,2&YU Hong 1,2 1College of Water Conservancy&Hydropower Engineering,Hohai University,Nanjing 210098,China,2National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,Nanjing 210098,China.Detection of subcritical crack propagation for concrete dams[J].Science China(Technological Sciences),2009,52(12):3654-3660. 被引量:14
  • 2蒋良潍,姚令侃,李仕雄.非均匀散粒体自组织临界性机制初探[J].岩石力学与工程学报,2004,23(18):3178-3184. 被引量:9
  • 3王任一,徐君,张玉荣.基于耗散结构理论的油藏开采动态评价模型[J].新疆石油地质,2006,27(3):324-327. 被引量:1
  • 4张东,张宁.物理学中的熵理论及其应用研究[J].北京联合大学学报,2007,21(1):4-8. 被引量:47
  • 5方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 6石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 7Hillerborg A,Modeer M,Peterson P E.Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cement Concrete Research,1976,6:773-782.
  • 8Planas J,Elices M,Guinea G V,et al.Generalizations and specializations of cohesive crack models[J].Engineering Fracture Mechanics,2003,70:1759-1776.
  • 9Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45:601-620.
  • 10Moes N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.

共引文献49

同被引文献136

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部