期刊文献+

利用RANSAC算法对建筑物立面进行点云分割 被引量:64

Segmentation of building facade point clouds using RANSAC
原文传递
导出
摘要 建筑物立面点云分割是车载激光扫描数据特征提取与建模的基础。本文将随机抽样一致性算法(Ran-dom Sampling Consensus)方法引入对点云的分割中,并在判断准则中引入了点云的r半径密度,消除了噪声的影响,同时建立角度和距离两个约束条件对平面分割结果进行优化,提取出了最终的建筑物立面特征平面。 Segmentation of building facade point clouds is the foundation of feature extraction and modeling from Vehicle-Borne LiDAR. In the paper, Random Sampling Consensus was introduced into the segmentation of LiDAR and r-radius point density was put forward to the estimation criterion, which aims to remove the discrete point outside the feature plane. Then two constraints of angle and distance were erected to unite the segmented planes which optimized the results.
出处 《测绘科学》 CSCD 北大核心 2011年第5期144-145,138,共3页 Science of Surveying and Mapping
关键词 车载激光扫描 随机抽样一致性 点云分割 r半径密度 vehicle-home LiDAR RANSAC segmentation of point clouds r-radius point density
  • 相关文献

参考文献7

  • 1史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 2Wani M A, Arabnia H R. Parallel edge re gion-based segmentation algorithm targeted at reconfi- gurable multiring network [ J] . Journal of Supercomputing. 2003, 25(1) : 43-62.
  • 3Sithole G, Vosselman G. Automatic structure detection in a point-cloud of an urban landscape[ C ] //2nd Joint Worksho Pon Remote Sensing and Data Fusion over Urban Aereas ( Urban 2003) .
  • 4Rabbani T, Heuvel F A, Vosselman. SEGMEN- TATION OF PO- INT CLOUDS USING SMOOTH- NESS CONST- RAI- NT [ J] . * in IAPRS Volume XXXVI, Part 5. Dresden. 2006.
  • 5Fischler M A, Bolles R C. Random Sam-ple Consensus: A Paradigm for Model fitting with ap- plication to hnage Analysis and Automated Cartogra-phy [ J ] . Communications of the ACM, 1981, 24(6) : 381-395.
  • 6陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 7Bauer J, Karner k, Schindler K, Klaus A , Zach C. Segmentation of building from de- nse 3D pointclouds, in Proceedings of the ISPRS [ M ] . Worksho PLaser scanning. 2005. Enschede, the Netherlands.

二级参考文献11

  • 1Brandt S. Maximum likelihood robust regression with known and unknown residual models. In: Proc. of the ECCV 2002. 2002.97-102.
  • 2Murray PTD. The development and comparison of robust methods for estimating the fundamental matrix. Int'l Journal of Computer Vision, 1996. 1-33.
  • 3Zhang ZY. Determining the epipolar geometry and its uncertainty: A review. Int'l Journal of Computer Vision, 1998,27(2):161-195.
  • 4Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM, 1981,24(6):381-395.
  • 5Rousseeuw PJ. Robust Regression and Outlier Detection. New York: John Wiley & Sons, 1987.
  • 6Torr PHS, Murray DW. Outlier detection and motion segmentation. SPIE 93, 1993. 432-443.
  • 7Stewart CV. MINPRAN: A new robust operator for computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence,1995,17(10):925-938.
  • 8Torr PHS, Zisserman A. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understand, 2000,78:138-156.
  • 9李清泉,李必军,陈静.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报,2000,25(5):387-392. 被引量:153
  • 10章毓晋.图象分割评价技术分类和比较[J].中国图象图形学报(A辑),1996,1(2):151-158. 被引量:70

共引文献194

同被引文献417

引证文献64

二级引证文献471

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部