期刊文献+

异构分布的多元线性回归隐私保护模型 被引量:11

Heterogeneous Distributed Linear Regression Privacy-Preserving Modeling
下载PDF
导出
摘要 隐私保护是数据挖掘领域中一个极其重要而富有挑战性的课题,以实现隐私数据的保护和准确知识的挖掘两者兼得为其最终目标.统计回归是数据挖掘的常用工具之一,而数据分布式存储情况下统计分析的研究工作甚少.由于机密性或其他原因,数据拥有者往往不情愿与其他合作方分享原始数据,去又希望与其他合作方共同协作执行统计分析.关注于如何解决既获取准确统计分析结果又保护原始数据隐私的平衡问题,基于环同态和离散对数计算困难的思想,建立了隐私保护回归模型,该模型通过同态公钥加密协议的同态性质从而获取准确的统计分析结果.经理论分析和实验证明该协议模型在语义上是安全的和有效的. Privacy-preserving is one of the most important and challenging issues in data mining field. It can help mining tools mine rules and patterns accurately while preserving the original private information of database. Statistical regression is a common tool in data mining field, but little work has been conducted to investigate how statistical analysis could be performed when data set is distributed among a number of data owners. Due to confidentiality or other proprietary reasons, data owners are reluctant to share data with others, while they wish to perform statistical analysis cooperatively. We address the important tradeoff between privacy and global statistical analysis. In this paper, the authors propose a homomorphous public key protocol based on ring homomorphism and discrete logarithm problem, and then constructe a privacy-preserving regression model, which can obtain accurate statistical results by using the homomorphous character of homomorphous public key protocol. Theoretical analysis and experiment results prove that the protocol and model are secure and effective.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第9期1685-1692,共8页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(60675030) 国家自然科学基金项目(60875029) 北京市教育委员会科技发展计划面上项目(KM200811232013)
关键词 安全多方计算 数据挖掘 线性回归 隐私保护 同态加密 密码学 secure multi-party computation~ data mining~ linear regression~ privacy-preserving homomorphous encryption cryptology
  • 相关文献

参考文献21

  • 1韩家炜.数据挖掘概念与技术[M].北京:北京机械工业出版社,2001.
  • 2Yang Bingru, Gao Jing, Song Wei. Cognitive physics techniques in data mining [J]. Journal of Computational Information Systems, 2007, 3(5): 1915-1928.
  • 3Yang Bingru, Song Wei, Li I.inna. Research overview of regulations in the process of dynamic mining [J]. Journal of Computational Information Systems, 2006, 2(3):973-979.
  • 4Agrawal R, Srikant R. Privacy preserving data mining [C]// Proc of ACM SIGMOD Int Conf on Management of Data. NewYork: ACM, 2000:439-450.
  • 5张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 6张鹏,唐世渭.朴素贝叶斯分类中的隐私保护方法研究[J].计算机学报,2007,30(8):1267-1276. 被引量:19
  • 7Chaudhuri K. When random sampling preserves privacy[J]. Lecture Notes in Computer Science, 2006, 4117 (1) : 198- 213.
  • 8葛伟平,汪卫,周皓峰,施伯乐.基于隐私保护的分类挖掘[J].计算机研究与发展,2006,43(1):39-45. 被引量:20
  • 9Aggarwal C C, Yu P S. Privacy Preserving Data Mining Models and Algorithms [M]. Berlin: Springer, 2007.
  • 10Kantarcioglu M, Clifton C. Privacy preserving distributed mining of association rules on horizontal partitioned data [C]//Proc of The ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery. New York: ACM, 2002:24-31.

二级参考文献61

  • 1秦静,张振峰,冯登国,李宝.一个特殊的安全双方计算协议[J].通信学报,2004,25(11):35-42. 被引量:10
  • 2Shun-DongLi Yi-QiDai.Secure Two-Party Computational Geometry[J].Journal of Computer Science & Technology,2005,20(2):258-263. 被引量:36
  • 3罗永龙,徐致云,黄刘生.安全多方的统计分析问题及其应用[J].计算机工程与应用,2005,41(24):141-143. 被引量:14
  • 4张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 5Rakesh Agrawal.Data mining:Crossing the chasm.The 5th Int'l Conf.Knowledge Discovery in Databases and Data Mining,San Diego,California,1999.
  • 6Rakesh Agrawal,Ramakrishnan Srikant.Privacy-preserving data mining.The ACM SIGMOD Conf.Management of Data,Dallas,Texas,2000.
  • 7Yehuda Lindell,Benny Pinkas.Privacy preserving data mining.In:Advances in Cryptology-Crypto.Berlin:Springer-Verlag,2000.36~ 54.
  • 8Dakshi Agrawal,Charu C.Aggarwal.On the design and quantification of privacy preserving data mining algorithms.The 20th Symposium on Principles of Database Systems,Santa Barbara,California,2001.
  • 9Wenliang Du,Zhijun Zhan.Using randomized response techniques for privacy-preserving data mining.The 9th ACM SIGKDD Int'l Conf.Knowledge Discovery in Databases and Data Mining,Washington,D.C.,2003.
  • 10L.F.Cranor,J.Reagle,M.S.Ackerman.Beyond concern:Understanding net users' attitudes about online privacy.AT&T Labs-Research,Tech.Rep.,1999.http://www.research.att.com/library/trs/TRs/99/99.4.3/report.htm.

共引文献80

同被引文献89

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部