期刊文献+

车辆阴影消除算法 被引量:2

Eliminate Algorithm of Vehicle Shadow
下载PDF
导出
摘要 讨论一种结合车辆阴影自身特征和阴影几何模型的阴影消除算法。使用VC 6.0结合OPENCV平台实现。该算法在分析车辆阴影自身特征的基础上,结合阴影几何模型,对相关像素按照提取出的车道线的方向进行坐标变换,在新的坐标系下寻找阴影与车身的边界位置后对阴影进行切除,然后再变换回原坐标系下,实验结果表明该方法对车辆阴影的去除效果很好。 This article discusses a new eliminate algorithm of vehicle shadow.That is combination of the vehicle shadow characteristics and geometric model.And it is realized by OPENCV and VC 6.0 platforms.The algorithm bases on the analysis of the characteristics of vehicle shadow,and combines the shadow geometric model,transforms the coordinate of the relevant pixels,according the direction of driveway line which has been extracted,finds the critical of vehicle and shadow in the new coordinate,and then eliminates the shadow and transforms back to the original coordinate.Experimental results show that the effect of this method of vehicle shadow remove is very good.
出处 《计算机与现代化》 2011年第9期30-32,共3页 Computer and Modernization
关键词 阴影消除 阴影特征 几何模型 坐标变换 shadow eliminate characteristics of shadow geometric model coordinate transformation
  • 相关文献

参考文献14

  • 1冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2007.
  • 2Prati A, Mikic I. Detecting moving shadows : Algorithms and e- valuation [ J ]. IEEE Trans. on PAMI,2003,25 (7) :918-923.
  • 3Koller D,Danilidis K,Nagel H H. Model-based object tracking in monocular image sequences of road traffic scences [ J ]. In- ternational Journal of Computer Vision,1993,10(3) :257-281.
  • 4Stauder J, Mech R, Ostermann J. Detection of moving cast shadows for object segmentation [ J ]. IEEE Transaction on Multimedia, 1999,1 ( 1 ) :65-76.
  • 5Kilger M. A shadow handler in a video-based real-time traf- fic monitoring system [ C ]//Proceedings of IEEE Workshop on Application of Computer Vision. 1992:11-18.
  • 6Zhu Z,Xu G. VISATRAM :A real-time vision system for au- tomatic traffic monitoring [ J ]. Image and Vision Compu- ting,2000,18 (10) :781-794.
  • 7Funka-Lea G, Bajacy R. Combing color and geometry for the active, visual recognition of shadows [ C ]//Proceedings of the Fifth International Conference. 1995:203-209.
  • 8Prati A,Mikic I,Trivedi M M,et al. Detecting moving shad- ows : Algorithms and evaluation [ J ]. IEEE Trans. Pattern A- nalysis and Machine Intelligence ,2003,25 ( 7 ) :918-213.
  • 9王运琼,游志胜,刘直芳.基于空间特征的汽车阴影分割方法[J].光电工程,2003,30(2):64-67. 被引量:9
  • 10刘勃,魏铭旭,周荷琴.混合交通环境中的阴影检测算法[J].信号处理,2005,21(2):172-177. 被引量:8

二级参考文献55

  • 1郑玮,康戈文,陈武凡,李小文.基于模糊马尔可夫随机场的无监督遥感图像分割算法[J].遥感学报,2008,12(2):246-252. 被引量:17
  • 2冯前进,陈武凡.模糊马尔可夫场模型与图像分割新算法[J].南方医科大学学报,2006,26(5):579-583. 被引量:8
  • 3刘伯红,陈铁民.基于粗糙集阴影区域的检测与分类[J].计算机科学,2007,34(3):220-223. 被引量:3
  • 4Cucchiara R, Granan C, Piecardi M, et al. Detecting moving objects, ghosts, and shadows in video streams [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10): 1337-1342.
  • 5Chien Shao-yi, Ma Shyh-yih, Chen Liang-gee. Efficient moving object segmentation algorithm using background registration technique [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(7) : 577-586.
  • 6Hsieh Jun-wei, Hu Wen-fong, Chang Chia-jung, et al. Shadow elimination for effective moving object detection by Gaussian shadow modeling [ J ] . Image and Vision Computing, 2003, 21 ( 6 ) : 505-516.
  • 7Rosin P, Ellis T. Image difference threshold strategies and shadow detection[ A]. In: Proceedings of the 1995 British Conference on Machine Vision [ C ], Birmingham, United Kingdom, 1995: 347-356.
  • 8Salvador E, Cavallaro A, Ebrahimi T. Cast shadow segmentation using invarlant color features [ J ]. Computer Vision and Image Understanding, 2004, 95 (2) :238-259.
  • 9Xu Dong, Liu Jian-zhuang, Li Xue-long, et al. Insignificant shadow detection for video segmentation [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15 (8) : 1058-1064.
  • 10John Canny. A computational approach to edge detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6) :679-698.

共引文献130

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部