期刊文献+

机器视觉中图像匹配问题研究 被引量:9

Research on Image Matching of Machine Vision
下载PDF
导出
摘要 随着计算机视觉技术的发展,机器视觉尤其是双目视觉被广泛应用于物体识别、虚拟现实、工业检测、机器人导航和航空航天等领域。图像匹配是机器视觉中的关键技术之一,能否有效地解决该问题严重影响着机器视觉的发展。对现有的匹配算法进行了研究的基础上,针对算法的实时性和精确度提出了改进算法。实验结果表明:误匹配像素百分比与目前常用的基于区域的匹配算法相当,而计算速度却提高了一个数量级,并且边缘特征较好,是一种有效可行的高实时性匹配算法。 With the development of the computer vision, the machine vision especially binocular vision is widely used in many fields such as object recognition, virtual reality, industrial detection, robotic navigation, aviation and spaceflight. Image matching is the one of key techniques in machine vision. The development of machine vision depends on the efficient solution of image matching. Based on study on the existing matching algorithms, an improved algorithm aiming at the real-time and ac- curacy of algorithms is proposed. Experimental results show that the computational speed has been improved for one order of magnitude while the percentage of bad matching Pixels is equivalent to commonly-used area-based matching algorithm. Besides, its edge feature is better, thus it is an effective and feasible stereo matching algorithm with good real-time performance.
出处 《现代电子技术》 2011年第18期46-49,52,共5页 Modern Electronics Technique
关键词 图像匹配 机器视觉 外极线校正 视差图 外极几何 image matching machine vision epipolar line rectification parallax image epipolar geometry
  • 相关文献

参考文献10

  • 1SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing [J].International Journal of Com- puter Vision, 1997, 23 (11): 45-78.
  • 2FAUGERAS O, HOTZ B, MATHIEU H, et al. Real-time correlation-based stereoalgorithm: implementations and ap- plications [R]. France: INRIA, 1993.
  • 3ZITNICK C L, KANADE T. A cooperative algorithm for stereo matching and occlusion detection [J].IEEE Transaction s on Pattern analysis and Machine intelligence, 2000, 22 (7) : 675-684.
  • 4SUN C. Fast stereo matching using rectangular subregioning and 3D maximum-surfacetechniques[J].International Journal of Computer Vision, 2002, 47 (1/3): 99-117.
  • 5SCHARSTEIN S. A taxonomy and evaluation of dense two- frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47 (1/3): 7-42.
  • 6刘玉兰,葛庆平.一种间接提取轮廓特征点的算法[J].计算机工程与应用,2004,40(10):51-52. 被引量:18
  • 7郑南宁.计算机视觉和模式识别[M].北京:国防工业出版社,1998..
  • 8孙宇臣,葛宝臻,张以谟.物体三维信息测量技术综述[J].光电子.激光,2004,15(2):248-254. 被引量:55
  • 9曾莹,刘波.一种基于关节角度的步态识别新方法[J].现代电子技术,2010,33(10):86-89. 被引量:8
  • 10张明杰.小波仿射不变函数与凸壳相结合的目标识别[J].现代电子技术,2010,33(6):156-159. 被引量:1

二级参考文献32

  • 1魏新,冯兴杰,刘山.基于支持向量机的多元文本分类研究[J].海军工程大学学报,2004,16(5):30-32. 被引量:13
  • 2田光见,赵荣椿.步态识别综述[J].计算机应用研究,2005,22(5):20-22. 被引量:16
  • 3Akhtar J, Javed M Y. Image Compression with Different Types of Wavelets[A]. International Conference on Emerging Technologies[C]. 2006 : 133 - 137.
  • 4Tieng Q M,Boles W W. Recognition of 2D Object Contours Using the Wavelet Transform Zero - crossing Representation[J]. IEEE Trans. on PAMI, 1997,19(8) :910 - 916.
  • 5Sun Yankui, Huang Wan. Separable 2D Dyadic Wavelet and its Applications in Contour Detection of Handwriting[A]. International Conference on Wavelet Analysis and Pattern Recognition[C]. 2007(3):1 316- 1 321.
  • 6Chen Guangyi,Tien D B. Invariant Fourier Wavelet Descriptor for Pattern Reeognition[J]. Pattern Recognition, 1999,32 (7):1 083-1 088.
  • 7Kiymik M K, Akin M, Subasi A. Automatic Recognition of Alertness Level by Using Wavelet Transform and Artificial Neural Network [J]. Journal of Neuroscience Methods, 2004,139(2) :231 - 240.
  • 8Khalil M, Bayoumi M. Invariant 2D Object Recognition Using the Wavelet Modulus Maxima[J]. Pattern Recognition Letters,2000,21(9):863 - 872.
  • 9Khalil M I, Bayoumi M. A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition[J]. IEEE Trans. on PAMI. 2001,23(10):1 152-1 164.
  • 10Bala E,Cetin A C. Computationally Efficient Wavelet Affine Invariant Functions for Shape Recognition[J]. IEEE Trans. on PAMI. 2004,26(8):1 095- 1 099.

共引文献82

同被引文献40

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部