期刊文献+

贝叶斯邮件分类中概念漂移问题研究 被引量:2

ON CONCEPT DRIFT IN BAYESIAN SPAM CLASSIFICATION
下载PDF
导出
摘要 贝叶斯算法因其简单、快速、分类精确度高等优点被广泛应用于垃圾邮件过滤中,然而随着时间的推移,概念漂移现象导致贝叶斯分类器准确率下降。针对此问题,提出了基于用户反馈的客户端贝叶斯动态学习算法,可自动学习新的邮件样本,计算复杂度较低。实验表明该方法能较好地适应概念漂移,满足邮件分类的个性化需求,有很好的实用性。 Nave Bayesian algorithm has been widely used in spam filtering for its simplicity,efficiency and accuracy;however,the concept drift has led to a decline in accuracy of Bayesian classifier as time goes on.To solve this problem,a client-side dynamic Bayesian learning algorithm based on users feedback is put forward.It can learn new samples automatically,and has low computational complexity.The experiments show that the method is well adapted to concept drift,can meet the requirement of personal e-mail classification,and has good practicability.
出处 《计算机应用与软件》 CSCD 2011年第9期116-118,共3页 Computer Applications and Software
基金 甘肃省自然科学基金项目(096RJZA084) 甘肃省教育厅研究生导师科研计划项目(0914-02 0814-4)
关键词 贝叶斯邮件过滤 概念漂移 动态学习 Bayesian spam filtering Concept drift Dynamic learning
  • 相关文献

参考文献12

  • 1曾小宁.垃圾邮件过滤系统的探究与实现[J].计算机工程与设计,2009,30(15):3522-3525. 被引量:8
  • 2中国反垃圾邮件联盟[EB/OL].http://www.anti-spam.org.cn.
  • 3李洋,方滨兴,王申.基于用户反馈的反垃圾邮件技术[J].计算机工程,2007,33(8):130-132. 被引量:9
  • 4Shrestha Raju, LIN Yaping, CHEN Zhiping. Bayesian Spam Filtering Based on Co-Weighting Multi-Estimations [ C ]//Progress in Intelli- gence Computation & Applications ,2009:500-505.
  • 5Jiansheng Wu, Tao Deng. Research in Anti-Spam Method Based on Bayesian Filtering[ C ]//2008 IEEE Pacific-Asia Workshop on Compu- tational Intelligence and Industrial Application,2008:887- 891.
  • 6Chun-Chao Yeh, Soun-Jan Chiang. Revisit Bayesian approaches for Spam Detection [ C ]//The 9th International Conference for Young Computer Scientists,2008:659 - 664.
  • 7Biju Issac, Wendy Japutra Jap, Jofry Hadi Sutanto. Improved Bayesian Anti-Spare Filter - Implementation and Analysis on Independent Spam Corpuses[ C ]//2009 International Conference on Computer En- gineering and Technology,2009:326 - 330.
  • 8Fdez-Riverola F,Iglesias E L, F Dl'az,et al. Applying lazy learning algorithms to tackle concept drift in spam filtering[ J]. Expert Systems with Applications,2007:36 - 48.
  • 9张学农,张立成.基于简单贝叶斯的中英文垃圾邮件过滤的比较分析[J].计算机应用与软件,2008,25(8):178-180. 被引量:2
  • 10Yang Yiming. An evaluation of statistical approaches to text categoriza- tion[J]. Information Retrieval ,1999,1 ( 1 -2) :69 -90.

二级参考文献25

共引文献80

同被引文献25

  • 1Yi Y,Wu J,Xu W. Incremental SVM based on reserved set for network intrusion detection[J].Expert Systems With Applications,2011,(06):7698-7707.
  • 2Orriols Puig A,Casillas J. Fuzzy knowledge representation study for incremental learning in data streams and classification problems[J].Soft Computing,2011,(12):2389-2414.
  • 3Li L J,Zou B,Hu Q H. Dynamic classifier ensemble using classification confidence[J].Neurocomputing,2013,(05):581-591.
  • 4Dai Q. A competitive ensemble pruning approach based on cross-validation technique[J].Knowledge-Based Systems,2013,(03):394-414.
  • 5Dries A,Rückert U. Adaptive concept drift detection[J].Statistical Analysis and Data Mining,2009,(06):311-327.
  • 6Hofer V,Krempl G. Drift mining in data:A framework for addressing drift in classification[J].Computational Statistics & Data Analysis,2013,(01):377-391.
  • 7Minku L L,Yao X. DDD:A new ensemble approach for dealing with concept drift[J].IEEE Transactions on Knowledge and Data Engineering,2012,(04):619-633.
  • 8Zhou J,Fu Y,Wu Y. Anomaly detection over concept drifting data streams[J].Journal of Computational Information Systems,2009,(06):1697-1703.
  • 9Luckner M,Gad M,Sobkowiak P.Stable Web spam detection using features based on lexical items[J].Computers Securi-ty,2014,46:79-93.
  • 10Bouchachia A,Gabrys B,Sahel Z.Overview of some incremental learning algorithms[C]//IEEE International Conference on Fuzzy Systems.2007:1-6.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部