期刊文献+

基于K-近邻法的局部加权朴素贝叶斯分类算法 被引量:3

LOCALLY WEIGHTED NAIVE BAYES CLASSIFICATION ALGORITHM BASED ON K-NEAREST NEIGHBOUR
下载PDF
导出
摘要 分类算法一直以来都是数据挖掘领域的研究重点,朴素贝叶斯分类算法是众多优秀分类算法之一,但由于其条件属性必需独立,使得该算法也存在着一定的局限性。为了从另外一种角度来改进该算法,提高分类性能,提出了一种基于K-近邻法的局部加权朴素贝叶斯分类算法。使用K-近邻法对属性加权,找到最合适的加权值,运用加权后的朴素贝叶斯分类算法去分类,实验表明该算法提高了分类的可靠性与准确率。 Classification algorithm has been the focus of research in the field of data mining,the Naive Bayes classification algorithm is one of the good classification algorithms.Because its condition attributes shall be independent however,there are some limitations in the algorithm.In order to improve the classification performance of the algorithm from another side,the locally weighted Naive Bayes classification algorithm based on K-nearest neighbour has been proposed in this paper.K-nearest neighbour method is used to weight the attributes to find the appropriate weights,the weighted Naive Bayes classification algorithm is then used for classification.Experiment shows that the algorithm improves the reliability and accuracy of the classification.
出处 《计算机应用与软件》 CSCD 2011年第9期267-268,291,共3页 Computer Applications and Software
关键词 朴素贝叶斯 K-近邻法 局部加权 分类 Naive Bayes K-nearest neighbour Locally weighted Classification
  • 相关文献

参考文献11

二级参考文献47

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 3程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 4Elkan C.Boosting and naive Bayesian learning,in Technical Report CS97[R].San Diego:Dept.of Computer Science and Engineering,Univ Calif at San Diego,1997.
  • 5HanJianwei.Data mining concepts and techniques[M].北京:机械工业出版社,2001.30-50.
  • 6Pawlak Z.Rough sets[M].London:Kluwer academic publishers,1991.10-60.
  • 7Pawlak Z.Rough sets:probabiIistic versus deterministic approach[J].International Journal of Man-Machine Studies,1998,29:81-95.
  • 8MitchellTM.Machinelearning[M].北京:机械工业出版社,2003.80-90.
  • 9王国胤.Rough集理论与知识获取[M].西安交通大学出版社,2003,3..
  • 10M Pankaj and W W Benjamin. Artificial neural networks:concepts and theory[M]. Los Alamitos, Calif. : IEEE Computer Society Press,1992.

共引文献233

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部