期刊文献+

一种基于SIFT的图像哈希算法 被引量:15

SIFT based image hashing algorithm
下载PDF
导出
摘要 图像哈希是近年来颇受关注的一个研究热点,但现有的图像哈希算法普遍存在对几何攻击(主要包括尺度、旋转、剪切)鲁棒性不足的缺点,不能满足很多实际应用的需要。针对上述问题,提出了对几何攻击具有强鲁棒性的SIH图像哈希算法。本算法基于在图像匹配等领域得到广泛应用的SIFT算子,通过对SIFT特征向量进行有针对性的筛选和压缩、基于特征向量分布质心的量化生成图像摘要。为适应图像摘要构造的特性,设计了基于广义集合距的匹配算法来衡量图像摘要间的距离。在公开图像库上的实验结果表明,本算法对几何攻击和非几何攻击的鲁棒性均优于对比算法,可广泛服务于图像识别/认证类型的应用。 Image hashing has been a research hotspot these years. Since most existing image hashing algorithms are not robust enough to geometric attacks, such as scale, rotation and cropping attacks, they cannot meet the requirements of many practical applications. To solve this problem, SIH algorithm is proposed in this paper, which is a new image hashing algorithm robust to geometric attacks. Our algorithm is based on the SIFT operator, which has been used in image matching field. The image digest is constructed through filtering and compressing the SIFT feature vec- tor, which is followed by the quantization based on the centroid of feature vector. To fit the characteristic of the structure of image digest, a generalized set distance based matching operation is designed in this paper, which is not the hamming distance based matching commonly used in existing image hashing algorithms. Experimental results on the public image database demonstrate that our algorithm outperforms the typical comparative algorithms both on geometric attacks and non-geometric attacks. The proposed algorithm can be widely used in image identification/authen- tication related applications.
机构地区 哈尔滨工业大学
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第9期2024-2028,共5页 Chinese Journal of Scientific Instrument
关键词 图像哈希 SIFT 几何攻击 鲁棒性 image hashing SIFT geometric attack robustness
  • 相关文献

参考文献15

  • 1SWAMINATHAN A, MAO Y, WU M. Robust and secure image hashing[ J ]. IEEE Trans. on Information Foren- sics and Security, 2006,1 ( 2 ) : 215-230.
  • 2孙锐,高隽.组合NMF和PCA的图像哈希方法[J].电子测量与仪器学报,2009,23(5):52-57. 被引量:19
  • 3FRIDRICH J. Robust bit extraction from images [ C ]. IEEE International Conference on Multimedia Computing and Systems, 1999,2:536-540.
  • 4ROY S, ZHU X, YUAN J. On preserving robustness false alarm tradeoff in media hashing [ C ]. Visual Communica- tions and Image Processing,2007,6508, part 1:65051C.
  • 5ROY S, SUN Q B. Robust hash for detecting and locali- zing image tampering[ C ]. IEEE International Conference on Image Processing,2007,6 : 117-120.
  • 6MONGA V, MIHCAK M K. Robust image bashing via non-negative matrix factorizations [ C ]. IEEE Internation- al Conference on Acoustics, Speech and Signal Process- ing,2006 ,2 :225-228.
  • 7VENKATESAN R, KOON S M, JAKUBOWSKI M H. Robust image hashing [ C ]. International Conference on Image Processing,2000, :664-666.
  • 8LOWED G. Distinctive image features from scale invari- ant keypoints [ J ]. International Journal of Computer Vi- sion,2004,60(2) :91-110.
  • 9MONGA V,EVANS B L. Perceptual image hashing via fea- ture points: performance evaluation and tradeoffs [ J ]. IEEE Trans. on Image Processing,2006,15( 11 ) :3452-3465.
  • 10KOAZAT S S, VENKATESAN R, MIHCAK M K. Robust perceptual image hashing via matrix invariants[ C]. Interna- tional Conference on Image Processing,2004,5:3443-3446.

二级参考文献36

  • 1贾涛,陈涛,杨润奎.基于仿射不变量的长基线立体匹配[J].仪器仪表学报,2005,26(z1):623-624. 被引量:2
  • 2罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 3丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 4STAUFFER C, GRIMSON W. Learning patterns of acitivty using real-time tracking[J]. IEEE Trans on PAMI, 2000,22(8): 747-757.
  • 5TAO H,SAWHNEY H, KUMAR R. Object tracking with bayesian estimation of dynamic layer representations[J]. IEEE Trans on PAMI, 2002,24 (1) : 75-89.
  • 6COLLINS R, FUJIYOSHI A, KANADE T. Algorithms for cooperative multisensor surveillance[C]// Proceedings of the IEEE. (Supp. 1) : IEEE, 2001,89 (10):1456-1477.
  • 7KANADE T, COLLINS R, LIPTON A, et al. Advances in cooperative multi-sensor video surveillance [C]// Proceedings of DARPA Image Understanding Workshop. Monterey: (Supp. 1), 1998,1:3-24.
  • 8CHANG T S, GONG S G. Tracking multiple people with a multi-camera system[C]//Proceedings of IEEE Workshop on Multi-Object Tracking. Washington.. IEEE, 2001: 19.
  • 9UTSUMI A, OHYA J. Multiple-camera-based human tracking using non-synchronous observations [C]// Proceedings of 4th ACCV. Taipei: IEEE, 2000: 1034- 1039.
  • 10KELLY P, KATKERE A, KURAMURA D, et al. An architecture for multiple perspective interactive video [C]// Proceedings of the third ACM international conference on Multimedia. New York: ACM, 1995: 201-212.

共引文献173

同被引文献97

引证文献15

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部