期刊文献+

遥感影像检索中高维特征的快速匹配

Fast High-dimensional Feature Matching for Retrieving Remote Sensing Images
下载PDF
导出
摘要 提高特征点匹配效率是将高维局部特征运用于遥感影像检索的关键,该文提出一种新的压缩优先过滤(CPF)索引算法。该算法通过量化特征向量构建近似向量空间上的高维索引结构,利用优先队列过滤得到近似近邻候选集,精确计算候选实际特征向量得到最终近邻。在CPF算法基础上提出了基于快速鲁棒性特征(SURF)的遥感影像快速检索算法。实验及分析表明,与经典的最佳桶优先(BBF)算法相比较,CPF降低了磁盘读写(I/O)和浮点运算次数,特征点数目较大时,查询效率和总体查询精度均有显著提高,基于SURF特征的遥感影像快速检索算法能快速返回正确目标与相似目标影像。 The key point in applying high-dimensional local features to remote sensing image retrieval is to improve the efficiency of feature matching.A new Compressed Priority Filter(CPF) algorithm is investigated that quantizes the feature vectors to compress the search space,constructs a high-dimensional index,searches candidates via priority queue,and calculates the exact feature vectors to get nearest neighbors.Then,a fast remote sensing image retrieval algorithm based on Speeded Up Robust Feature(SURF) features is proposed based on CPF.It is proved by experiments and via analysis that CPF can reduce disk I/O and float-pointing calculation.When the number of features is big,it is much faster and more precise than the classical BBF algorithm.It is obvious that the fast remote sensing image retrieval algorithm based on SURF can return to the correct related target image from the gallery quickly,together with similar images.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2144-2151,共8页 Journal of Electronics & Information Technology
基金 国家863计划项目(2008AA12A211 2009AA7010413)资助课题
关键词 遥感影像检索 特征向量匹配 高维k近邻(kNN)查询 最佳桶优先(BBF)算法 Remote sensing image retrieving Feature matching High-dimensional k-Nearest-Neighbor(kNN) search Best-Bin-First(BBF) algorithm
  • 相关文献

参考文献20

  • 1Datta R, Joshi D, Li J, et al.. Image retrieval: ideas, influences, and trends of the new age [J]. ACM Computing Surveys, 2008, 40(2): 5:1-5:60.
  • 2Weber R, Schek H J, and Blott S. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[C]. Proceeding of VLDB, New York, USA, 1998: 194-205.
  • 3Berchtold S, Bohm C, Jagadish H V, et al.. Independent quantization: an index impression technique for high-dimensional data spaces[C]. Proceeding of ICDE, Sun Diego, USA, 2000: 577-588.
  • 4Cha G H, Zhu X, Petkovic D, et al.. An efficient indexing method for nearest neighbour searches in high-dimensional image databases[J]. IEEE Transactions on Multimedia, 2002, 4(1): 76-87.
  • 5Jagadish H V, Ooi B C, Tan K L, et al.. iDistance: an adaptive B+-tree based indexing method for nearest neighbour search[J]. A CM Transactions on Database Systems 2005, 30(2): 364-397.
  • 6Yen S, Shih C, Chang H, et al.. Nearest neighbour searching in high dimensions using multiple KD-trees[C]. Proceedings of the 10th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Vision, Stevens Point, USA, 2010: 40-45.
  • 7张军旗,周向东,王梅,施伯乐.基于聚类分解的高维度量空间索引B^+-Tree[J].软件学报,2008,19(6):1401-1412. 被引量:23
  • 8Tuncel E, Ferhatosmanoglu H, and Rose K. VQ-index: an index structure for similarity searching in multimedia databases[C]. Proceeding of ACM MM, Juan-les-Pins, France 2002: 543-552.
  • 9Slaney M and Casey M. Locality-sensitive hashing for finding nearest neighbors[J]. IEEE Signal Processing Magazine, 200825(2): 128-131.
  • 10Kulis B and Grauman K. Kernelized locality-sensitive hashing for scalable image search [C]. Proceeding of ICCV, Kyoto, Japan, 2009: 2130-2137.

二级参考文献27

  • 1周项敏,王国仁.基于关键维的高维空间划分策略[J].软件学报,2004,15(9):1361-1374. 被引量:16
  • 2董道国,刘振中,薛向阳.VA-Trie:一种用于近似k近邻查询的高维索引结构[J].计算机研究与发展,2005,42(12):2213-2218. 被引量:10
  • 3周项敏,王国仁,常立,范丹.批量构建M^+-tree[J].小型微型计算机系统,2006,27(2):295-299. 被引量:1
  • 4卢炎生,饶祺.一种LSH索引的自动参数调整方法[J].华中科技大学学报(自然科学版),2006,34(11):38-40. 被引量:6
  • 5Schaffalitzky F, Zisserman A. Multi-view matching for unordered image sets, or "how do I organize my holiday snaps?"[C] //Proceedings of the 7th European Conference on Computer Vision, Copenhagen, 2002 : 414-431.
  • 6Snavely N, Seitz S M, Szeliski R. Photo tourism: exploring photo collections in 3D [J]. ACM Transactions on Graphics, 2006, 25(3): 835-846.
  • 7Mikolajczyk K, Leibe B, Schiele B. Local features for object class recognition [C] //Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005: 1792-1799.
  • 8Brown M, Lowe D G. Automatic panoramic image stitching using invariant features [J]. International Journal of Computer Vision, 2007, 74(1): 59-73.
  • 9Yao J, Cham W K. Robust multi-view feature matching from multiple unordered views [J]. Pattern Recognition, 2007, 40 (11): 3081-3099.
  • 10Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos [C] //Proceedings of the 9thIEEE International Conference on Computer Vision, Nice, 2003:1470-1477.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部