期刊文献+

鲁棒后退时域控制中HJI方程的数值解法及控制器设计 被引量:3

Numerical optimization method for HJI equations derived from robust receding horizon control schemes and controller design
原文传递
导出
摘要 本文讨论了由不确定非线性系统鲁棒后退时域控制(robust receding horizon control,RRHC)策略导出的Hamilton-Jacobin-Isaac(HJI)方程的求解,提出了一种新的带反曲变换的有限差分算法计算值函数,所提出算法对HJI方程的求解是一种稳定且收敛的算法.同时提出基于边界值迭代的加速过程,加速优化问题的求解,在花费更少计算时间的前提下,提高计算精度.所求得的值函数可直接应用于一类不确定非线性系统鲁棒后退时域控制器的设计,在控制器设计中,传统鲁棒后退时域控制策略中的有限时域被扩展到无限时域,求得的控制器可实时实现,避免对初始点可解性的依赖以及反复在线优化问题. This paper addresses how to numerically solve the Hamilton-Jacobin-Isaac(HJI) equations derived from the robust receding horizon control schemes.The developed numerical method,the finite difference scheme with sigmoidal transformation,is a stable and convergent algorithm for HJI equations.A boundary value iteration procedure is developed to increase the calculation accuracy with less time consumption.The obtained value function can be applied to the robust receding horizon controller design of some kind of uncertain nonlinear systems.In the controller design,the finite time horizon is extended into the infinite time horizon and the controller can be implemented in real time.It can avoid the on-line repeated optimization and the dependence on the feasibility of the initial state which are encountered in the traditional robust receding horizon control schemes.
出处 《中国科学:信息科学》 CSCD 2011年第9期1156-1170,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60974141,60504006,60621001,60728307,60774093) 辽宁省自然科学基金(批准号:20092007) 中央高校基本科研业务费专项基金(批准号:N100404015,N100404012)资助项目
关键词 动态规划 不确定非线性系统 数值方法 鲁棒后退时域控制 微分对策 dynamic programming uncertain nonlinear systems numerical method robust receding horizon control differential game
  • 相关文献

参考文献31

  • 1Rawling J,Meadows E,Muske K.Nonlinear model predictive control:a tutorial and survey. Proceedings of IFACADCHEM . 1994
  • 2Campo P,Morari M.Robust model predictive control. Proceedings of American Control Conference . 1987
  • 3Mhaskar P,El-Farra N,Christofides P.Predictive control of switched nonlinear systems with scheduled mode transi-tions. IEEE Transactions on Automatic Control . 2005
  • 4Song C.Numerical optimization method for HJB equations with its application to receding horizon control schemes. Proceedings of IEEE Conference on Decision and Control . 2009
  • 5Song C,Ye J,Liu D,et al.Generalized receding horizon control of fuzzy systems based on numerical optimizationalgorithm. IEEE Transactions on Fuzzy Systems . 2009
  • 6Kushner H,Dupuis P.Numerical Methods for Stochastic Control Problems in Continuous Time. . 2001
  • 7Kushner H.Numerical approximations for stochastic differential games. The SIAM Journal on Control and Optimization . 2002
  • 8Fleming W,,Soner H.Controlled Markov Processes and Viscosity Solutions. . 2006
  • 9Barles G,Souganidis P.Convergence of approximation schemes for fully nonlinear second order equations. J AsymptAnal . 1991
  • 10Q.S.Song.Convergence of Markov chain approximation on generalized HJB equation and its applications. Automatica . 2008

同被引文献90

  • 1Isaacs R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. New York: Dover Publications, 1999.
  • 2Issacs R. Differential Games: SIAM Series in Applied Mathematics. New York: John Wiley and Sons, 1965.
  • 3Friedman A. Differential Games: Pure and Applied Mathematics Series. New York: Wiley Interscience, 1971.
  • 4Friedman A. Differential Games. Rhode Island: American Mathematical Society, 1974.
  • 5Nash J. Non-cooperative games. Annals of Mathematics, 1951, 54(3): 286-295.
  • 6Basar T, Olsder G J. Dynamic Noncooperative Game Theory (2nd Edition). New York: SIAM, Society for Industrial and Applied Mathematics, 1999.
  • 7Basar T, Bernhard P. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach (2nd Edition). Boston: Birkh?user Boston Inc., 2008.
  • 8Isaacs R. Differential games: their scope, nature, and future. Journal of Optimization Theory and Applications, 1969, 3(5): 283-292.
  • 9Bardi M, Capuzzo-Dolcetta I. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Boston: Birkh?user Boston Inc., 1997.
  • 10Beard R, Saridis G, Wen J. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12): 2159-2177.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部