期刊文献+

适用于小样本问题的有监督边界检测方法

Supervised boundary detection for small sample problem
下载PDF
导出
摘要 针对自然图像纹理复杂的特点,提出了一种多种信息融合的有监督边界检测方法。首先,该方法在小样本的情况下,通过快速生成纹理基元特征来引入纹理信息;然后,根据图像中每个像素邻域内的灰度分布和纹理基元分布的差异来计算灰度梯度和纹理梯度,并在此基础上构造出二维的梯度特征向量;接着,用有监督的分类器进行分类,自适应地检测出初始的边缘点;最后,设计一个边界定位函数确定最终的边缘点,实现边界检测。实验结果表明,该算法运算速度较快,所检测的边界效果好。 For natural images of complex texture,a supervised boundary detection method using the multi-information fusion was proposed.The texture information was introduced by quickly generating texton feature in the case of small sample.Intensity and texture gradients were further computed according to the differences of intensity and texton distributions within a pixel's neighborhood.In this way,a two-dimensional gradient feature vector was constructed,and a supervised classifier was used to adaptively detect original edge pixels.Finally,a boundary localization function was designed to determine the final edge pixels.The experimental results have demonstrated that the proposed method is faster and more effective.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2697-2701,共5页 journal of Computer Applications
基金 国家973计划项目(2010CB732501)
关键词 小样本问题 边界检测 纹理基元 监督学习 分类器 small sample problem boundary detection texton supervised learning classifier
  • 相关文献

参考文献10

  • 1章毓晋.图像工程:中册[M].北京:清华大学出版社,2005.
  • 2刘曙,罗予频,杨士元.基于多尺度形态学的红外图像边缘检测方法[J].计算机应用,2007,27(4):970-971. 被引量:4
  • 3岳思聪,赵荣椿,郑江滨.基于多尺度边缘响应函数的自适应阈值边缘检测算法[J].电子与信息学报,2008,30(4):957-960. 被引量:10
  • 4孟祥林,王正志.基于主导拮抗抑制的多尺度边缘检测[J].国防科技大学学报,2010,32(6):53-58. 被引量:1
  • 5KONISHI S, YUILLE A, COUGHLAN J, et al. Statistical edge de- tection: learning and evaluating edge cues[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 ( 1 ) : 57 - 74.
  • 6冯强,于盛林,黄晓晴,张维.一种新颖的有核细胞边缘检测方法[J].中国图象图形学报,2009,14(10):2004-2009. 被引量:5
  • 7MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natu- ral image boundaries using local brightness, color and texture cues [ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2004, 26(5) :530 -549.
  • 8JULESZ B. Textons, the elements of texture perception, and their interactions [J]. Nature, 1981, 290:91-97.
  • 9RANDEN T, HUSOY J H. Filtering for texture classification: A comparative study [ J]. IEEE Transactions on Pattern Analysis Ma- chine Intelligence, 1999, 21(4) : 291 - 309.
  • 10HAFNER J, SAWHNEY H S, EQUITZ W, et al. Efficient color histogram indexing for quadratic form distance functions [ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1995, 17 (7) : 729 -736.

二级参考文献30

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部