期刊文献+

一种改进的模块PCA人脸识别新方法 被引量:11

New face recognition method based on improved modular PCA
下载PDF
导出
摘要 提出了一种改进的模块PCA方法,即基于独立特征抽取的模块PCA方法。算法先对图像进行分块,然后对每一子块独立地进行PCA处理,求出测试样本子块与训练样本对应子块间的距离;最后将这些距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库和Yale人脸库上的实验结果表明,提出的方法在识别性能上明显优于普通模块PCA方法。 An improved modular PCA(Principal Component Analysis) method,that is modular PCA method based on independence of feature extraction,is proposed.The original images are divided into sub-images in proposed approach.Then each kind of sub-images at the same position have been disposed by PCA independently,the distance between the corresponding sub-images of the test sample and the train sample can be given.Finally,the distance between the test sample and the train sample can be caculated by adding all these distances between the sub-images together,the nearest distance classification is used to distinguish each face.Experimental results on ORL face database and Yale face database indicate that the improved modular PCA is obviously superior to that of general modular PCA.
作者 张岩 武玉强
出处 《计算机工程与应用》 CSCD 北大核心 2011年第26期216-218,共3页 Computer Engineering and Applications
基金 国家教育部科学技术研究重点项目(No.208074) 济宁学院科研基金项目(No.2009KJLX04)
关键词 主成分分析 模块主成分分析 特征抽取 人脸识别 Principal Component Analysis(PCA) modular principal component analysis feature extraction face recognition
  • 相关文献

参考文献11

  • 1Valentin D, Abdi H, O' Toole A J.Connectionist model of face processing: a survey[J].Pattem Recognition, 1994,27 (9) : 1209-1230.
  • 2Chellappa R.Hurnan and machine recognition of faces:a survey[J]. Proceedings of the IEEE, 1995,83(5) :705-740.
  • 3张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:259
  • 4Lu Juwei, Plataniotis K N, Venetsanopoulos A N.Face recognitionusing LDA-based algorithms[J].IEEE Trans Neural Networks, 2003,14(1) : 195-200.
  • 5Kwak K C,Pedrycz W.Face recognition using an enhanced independent component analysis approach[J].IEEE Trans Neural Networks,2007,18(2) :530-541.
  • 6Song F X,Zhang D,A parameterized direct LDA and its applicationto face recognition[J].Neurocomputing,2007,71 : 191-196.
  • 7Sirovich L,Kirby M.Low-dimensional procedure for the characterization of human faces[J].Journal of the Optical Society of America, 1987,4(3) :519-524.
  • 8Kirby M, Sirovich L.Application of the KL Procedure for the characterization of human faces[J].IEEE Trans Pattern Analysisand Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 9Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3 ( 1 ) : 71-86.
  • 10Gotturnukkal R.Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattem Recognition Letter, 2004,25: 429-436.

二级参考文献21

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.224-227.
  • 3Yang Jian,Yang Jing-Yu .Why can LDA be performed in PCA transformed space? [J].Pattern Recognition,2003,36:563~566.
  • 4Sirovich L,Kirby M.Low-Dimensional Procedure for Characterization of Human Faces.J Optical Soc Am,1987,4:519~524.
  • 5Kirby M,Sirovich L.Application of the KL Procedure for the Characterization of Human Faces.IEEE Trans Pattern Analysis and Machine Intelligence,1990,12(1):103~108.
  • 6Turk M,Pentland A.Eigenfaces for Recognition.J Cognitive Neuroscience,1991,3(1):71~86.
  • 7Hong Z Q,Yang J Y,et al.Optimal discriminant plane for a small number of samples and design method of classifier on the plane [J].Pattern Recognition,1991,24 (4):317~324.
  • 8Liu K,Yang J-Y,et al.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method [J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817~829.
  • 9Liu K,Cheng Y-Q,Yang J-Y,et al.Algebraic feature extraction for image recognition based on an optimal discriminant criterion [J] .Pattern Recognition,1993,26(6):903~911.
  • 10Chen Li-Fen,Mark Liao H-Y,Ko M-T,et al.A new LDA-based face recognition system which can solve the small sample size problem [J].Pattern Recognition,2000,33 (10):1713~1726.

共引文献272

同被引文献154

引证文献11

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部