期刊文献+

BACKWARD LINEAR-QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO-SUM DIFFERENTIAL GAME PROBLEM WITH RANDOM JUMPS

BACKWARD LINEAR-QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO-SUM DIFFERENTIAL GAME PROBLEM WITH RANDOM JUMPS
原文传递
导出
摘要 This paper studies the existence and uniqueness of solutions of fully coupled forward-backward stochastic differential equations with Brownian motion and random jumps.The result is applied to solve a linear-quadratic optimal control and a nonzero-sum differential game of backward stochastic differential equations.The optimal control and Nash equilibrium point are explicitly derived. Also the solvability of a kind Riccati equations is discussed.All these results develop those of Lim, Zhou(2001) and Yu,Ji(2008).
作者 Detao ZHANG
机构地区 School of Mathematics
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第4期647-662,共16页 系统科学与复杂性学报(英文版)
基金 supported by National Natural Science Foundation of China(10671112) National Basic Research Program of China(973 Program)(2007CB814904) the Natural Science Foundation of Shandong Province(Z2006A01)
关键词 Backward stochastic differential equations nonzero-sum differential game optimal con-trol poisson processes Riccati equation. 线性二次随机最优控制 正倒向随机微分方程 博弈问题 非零 跳跃 线性二次型最优控制 Riccati方程 解的存在性
  • 相关文献

参考文献3

二级参考文献14

  • 1Y. Hu, and S. Peng, Solution of forward-backward stochastic differential equations, Proba. Theory and Related Fields, 1995, 103: 273-283.
  • 2S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 1999, 37: 825-843.
  • 3J. Yong, Finding adapted solution of forward backward stochastic differential equations-method of continuation, Proba Theory and Related Fields, 1997, 107: 537-572.
  • 4W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control Optim., 1968,6: 312-326.
  • 5J. M. Bismut, Controle des systemes lineaires quadratiques: applications de l'integrale stochastique, Lecture Notes in Mathematics, vol.649, Seminaire de Probabilites XII, Proceedings, Strasbourg, 1976-1977, Edite par C. Dellacherie, P. A. Meyer et M. Weil, Springer-Verlag, 1978, 180-264.
  • 6S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim. 1998, 36: 1685-1702.
  • 7S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions,Stochastic Processes and Their Applications, 2000, 88: 259-290.
  • 8A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
  • 9A. Bensoussan, Point de Nash dans de cas de fonctionnelles quadratiques et jeux differentiels a Npersonnes, SIAM J. Control, 1974, 12(3).
  • 10T. Eisele, Nonexistence and nonuniqueness of open-loop equilibria in linear-quadratic differential games, J. Math. Anal. Appl., 1982, 37: 443-468.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部