期刊文献+

A LEGENDRE GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS 被引量:1

A LEGENDRE GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS
原文传递
导出
摘要 This paper considers the Legendre Galerkin spectral approximation for the unconstralnea optimal control problems. The authors derive a posteriori error estimate for the spectral approximation scheme of optimal control problem. By choosing the appropriate basis functions, the stiff matrix of the discretization equations is sparse. And the authors use the Fast Legendre Transform to improve the efficiency of this method. Two numerical experiments demonstrating our theoretical results are presented.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第4期663-671,共9页 系统科学与复杂性学报(英文版)
基金 supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008) the National Natural Science Foundation of China under Grant No.10971074
关键词 Legendre-Galerkin optimal control spectral method. 最优控制问题 Galerkin Legendre变换 后验误差估计 刚度矩阵 离散方程 数值实验 谱逼近
  • 相关文献

参考文献20

  • 1C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
  • 2B. Y. Guo Spectral Methods and Their Applications, World Sientific, 1998.
  • 3C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Fundamentals in Single Domains, Springer, Heidelberg, 2006.
  • 4L. N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, 2000.
  • 5W. B. Liu and N. N. Yah, A posteriori error analysis for convex distributed optimal control prob- lems, Adv. Com. Math., 2001, 15: 285-309.
  • 6W. B. Liu and N. N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 2003, 93: 497-521.
  • 7W. B. Liu and N. N. Yan, A posteriori error estimates for optimal control of stokes flows, SIAM J. Numer. Anal., 2003, 40: 1805-1869.
  • 8W. B. Liu and D. Tiba, Error estimates for the finite element approximation of nonlinear optimal control problems, J. Numer. Func. Optim., 2001, 22: 953-972.
  • 9Y. Chen, Superconvergence of optimal control problems by rectangular mixed finite element meth- ods, Math. of Comput., 2008, 77: 1269-1291.
  • 10Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comput. Appl. Math., 2008, 211: 76-89.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部