期刊文献+

基于MMAS算法的带到达时间批调度问题研究 被引量:6

Research on batch scheduling problem with job release time based on max-min ant system
下载PDF
导出
摘要 研究了工件带到达时间的目标为极小最大完工时间(C_(max))的单机批调度问题,采用最大-最小蚂蚁系统(max-min ant system,MMAS)进行求解。针对问题带到达时间以及分批的特性,提出了两种候选列表(candidate list)构建批序列,有效地缩小了搜索空间的维度;考虑两种候选列表的工件对构造解具有不同的影响,针对不同的候选列表设计了相应的启发式信息.仿真实验部分从求解质量和时间性能两方面比较了本文提出的算法和标准的蚂蚁系统(ant system,AS)算法以及使用不同候选列表的MMAS算法.结果表明,本文的算法在质量和时间两方面均全面优于标准的AS算法,而提出的候选列表使得该算法在大幅度提高时间性能的同时,仍然能够取得近似最优解,从而在求解质量和时间性能两方面取得平衡. This paper studies the batch scheduling problem with job release time whose aim is to minimize the makespan using max-min ant system (MMAS). Based on the characteristics of job release time and hatching, two kinds of candidate list (CL) were proposed to construct batch sequence, which can reduce the dimension of search spaces effectively. Considered the different influences of two CLs on constructing solution, correspond- ing heuristic information was designed for each CL. In the computational experiment, the algorithm proposed in this paper was compared with the pure ant system (AS) and the MMAS algorithm with different CLs in the respects of solution quality and execution time. The results demonstrate that our algorithm outperforms the pure AS algorithm in the above two respects. And the novel way making use of CL helps the algorithm lighten the computational burden significantly, while obtain near-optimal solutions. It can thus provide a good tradeoff between solution quality and execution time.
出处 《系统工程学报》 CSCD 北大核心 2011年第4期474-484,共11页 Journal of Systems Engineering
基金 创新研究群体科学基金资助项目(70821001) 国家自然科学基金资助项目(70821001) 博士点基金资助项目(200803580024) 中国科学技术大学研究生创新基金资助项目(KD2008073)
关键词 批调度 到达时间 最大完工时间 蚁群算法 最大-最小蚂蚁系统 batch scheduling release time makespan ant algorithm max-min ant system
  • 相关文献

参考文献27

  • 1Ikura Y, Gimple M. Scheduling algorithms for a single batch processing machine[J]. Operations Research Letters, 1986, 5(2): 61-65.
  • 2Uzsoy R, Yang Y. Minimizing total weighted completion time on a single processing machine[J]. Production and Operations Management, 1997, 6(1): 57-73.
  • 3Azizoglu M, Webster S. Scheduling a batch processing machine with non-identical job sizes[J]. International Journal of Production Research, 2000, 38(10): 2173-2184.
  • 4Sung C S, Kim Y H. Minimizing makespan in a two-machine flowshop with dynamic arrivals allowed[J]. Computers & Operations Research, 2002, 29(3): 275-294.
  • 5Uzsoy R. Scheduling a single batch processing machine with non-identical job sizes[J]. International Journal of Production Research, 1994, 32(7): 1615-1635.
  • 6Melouk S, Damodaran P, Chang P Y. Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing[J]. International Journal of Production Economics, 2004, 87(2): 141-147.
  • 7Damodaran E Manjeshwar P K, Srihari K. Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms[J]. International Journal of Production Economics, 2006, 103(2): 882-891.
  • 8程八一,陈华平,王栓狮.基于微粒群算法的单机不同尺寸工件批调度问题求解[J].中国管理科学,2008,16(3):84-88. 被引量:10
  • 9Ghazvini F J, Dupont L. Minimizing mean flow times criteria on a single batch processing machine with non-identical jobs sizes[J]. International Journal of Production Economics, 1998, 55(3): 273-280.
  • 10张玉忠,曹志刚.并行分批排序问题综述[J].数学进展,2008,37(4):392-408. 被引量:13

二级参考文献57

共引文献49

同被引文献52

  • 1陈莉,陈晓云,胡山立.基于蚁群算法的组合拍卖胜者决定问题求解[J].计算机研究与发展,2006,43(z1):69-73. 被引量:4
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3Nisan N. Bidding and allocation in combinatorial auctions[C] // Proceedings of the 2nd ACM Conference on Electronic Commerce.Minneapolis. Minnesota: ACM Press, 2000: 1-12.
  • 4Park S, Rothkopf M H. Auctions with bidder-determined allowable combinations[J]. European Journal of Operational Research,2005, 161(2): 399-415.
  • 5Rothkopf M H,Pekec A, Harstad R M. Computationally manageable combinational auctions [J]. Management Science, 1998,44(8):1131-1147.
  • 6Dulluri S,Raghavan N R S. Allocation of advertising space by a web service provider using combinatorial auctions[J]. Sadhana,2005, 30(2/3): 213-230.
  • 7Gan R, Guo Q, Chang H, et al. Ant colony optimization for winner determination in combinatorial auctions[C] // Third InternationalConference on Natural Computation. Haikou, IEEE Press, 2007: 441—445.
  • 8Sandholm T. Algorithm for optimal winner determination in combinatorial auctions[J]. Artificial Intelligence, 2002,135(1/2): 1-54.
  • 9Song J, Regan A. Approximation algorithms for the bid construction problem in combinatorial auctions for the procurement offreight transportation contracts[J]. Transportation Research: Part B, 2005, 39(10): 914-933.
  • 10Hsieh F S. Combinatorial reverse auction based on revelation of Lagrangian multipliers [J]. Decision Support Systems,2010,48(2):323-330.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部