期刊文献+

制造决策的知识融合粗糙集模型 被引量:5

A Knowledge-Based Rough Set Model for Manufacturing Decision
下载PDF
导出
摘要 由于制造系统的复杂性和不确定性,单一的知识建模或数据挖掘建模都面临着知识或数据信息的不完备.为有效、充分地利用已有信息减少不确定性,文中提出了知识和数据挖掘相融合的建模思想,将知识嵌入到粗糙集模型中,建立了知识的函数关系,给出了基于不可分辨-函数关系的粗糙集决策模型,研究了不可分辨-函数关系下的知识分类和推理.相比原粗糙集模型,基于知识的粗糙集模型具有更高的划分精度,发现知识更丰富,结构形式更具归纳性.实验结果验证了决策模型的有效性和应用的灵活性. Due to the complexity and uncertainties of the manufacturing system, both the knowledge modeling and the data mining modeling are restricted by incomplete knowledge and data. In this paper, in order to reduce the uncertainties by making full and effective use of the known information, an modeling idea of integrating the knowledge with the data mining is proposed to embed the knowledge into the rough set model, with the function relations of the knowledge established. Then, based on the indiscernibility relations and the function relations, a novel knowledge-based rough set model (KBRSM) is developed and the knowledge classification and inference are investigated. As compared with the original rough set model, KBRSM is of high classification accuracy, excellent performance of knowledge discovery as well as of a generalized form. Experimental results show that the proposed decision model is effective and practically flexible.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第8期36-41,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"863"计划项目(2009AA043901)
关键词 决策 知识融合 粗糙集 不可分辨-函数关系 decision knowledge fusion rough set indiscernibility-function relation
  • 相关文献

参考文献9

  • 1张伯鹏.制造信息全面质量管理研究(一)[J].制造业自动化,2002,24(8):1-5. 被引量:1
  • 2Choudhary A, Harding J A, Tiwari M K. Data mining in manufacturing: a review based on the kind of knowledge [ J ]. Journal of Intelligent Manufacturing, 2009,20 ( 5 ) : 501-521.
  • 3Andrew Kusiak, Matthew Smith. Data mining in design of products and production systems [ J ]. Annual Reviews in Control ,2007,31 ( 1 ) : 147-156.
  • 4Massimo Pacellaa, Quirico Semerarob. Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring [ J 1. Computers & Indus- trial Engineering,2007,52(4) :502-520.
  • 5Yu Jian-bo, Xi Li-feng, Zhou Xiao-jun. Intelligent monito- ring and diagnosis of manufacturing processes using an in- tegrated approach of KBANN and GA [ J ]. Computers in Industry ,2008,59(5 ) :489-501.
  • 6徐显龙,同淑荣,孙宜然,曹宜英.支持保质设计的制造质量信息模型[J].制造业自动化,2008,30(7):14-17. 被引量:3
  • 7Tseng T L, Kwonb Y, Erteki Y M. Feature-based rule in- duction in machining operation using rough set theory for quality assurance [ J ]. Robotics and Computer-Integrated Manufacturing, 2005,21 (6) : 559- 567.
  • 8殷国富,方辉,王卓,等.基于粗糙集的机械制造工艺知识发现方法研究[EB/OL].[2010-12-10].http://www.paper.edu.cn/index.php/defauh/releasepaper/content/200701-270.
  • 9谢楠,李爱平,徐立云.面向可重组制造系统的快速诊断技术研究[J].中国机械工程,2005,16(17):1545-1549. 被引量:6

二级参考文献11

  • 1舒启林,王成恩.产品全生命周期中的制造信息模型[J].东北大学学报(自然科学版),2005,26(8):774-777. 被引量:11
  • 2Koren Y, Heisel U,Jovane F, et al. Reconfigurable Manufacturing Systems. Annals of the CIRP, 1999,48(2) :527-540.
  • 3Smith G M. Statistical Process Control and Quality Improvement. 3rd ed. New Jersey: Prentice Hall,1998.
  • 4Pawlak Z. Rough Set Approach to Knowledge-based Decision Support. European Journal of Operational Research,1997,99(1):48-57.
  • 5曾黄鳞.粗集理论及其应用[M].重庆:重庆大学出版社,1996..
  • 6Borg.J, et al. Exploring descision's influence on life-cycle performance to aid design for Multi-X. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Cambridge University Pres s, Vol. 14, No. 6 (2000):91 - 113.
  • 7S.Ahmed, K.M.Wallace. Understanding the knowledge needs of novice designers in the aerospace industry[J]. Design Studies, Vol.25, No.2 (2004):155-173.
  • 8Simon Szykman, Ram D. Sriram. The role of knowledge in next-generation product development systems[J]. Journal of Computing and Information Science in Engineering, Vol. 1, March 2001:3-11.
  • 9张芳霁,余忠华,吴昭同,高琦.支持保质设计过程的质量数据总体模型研究[J].计算机工程与应用,1999,35(8):11-13. 被引量:7
  • 10赵震,彭颖红.基于KBE的工程设计——理论、方法与实践[J].机械科学与技术,2003,22(1):151-153. 被引量:38

共引文献7

同被引文献58

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部