期刊文献+

Projected subgradient method for non-Lipschitz set-valued mixed variational inequalities

Projected subgradient method for non-Lipschitz set-valued mixed variational inequalities
下载PDF
导出
摘要 A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven that the sequence generated by the method can strongly converge to the unique solution to the problem in the Hilbert spaces. A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven that the sequence generated by the method can strongly converge to the unique solution to the problem in the Hilbert spaces.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第10期1345-1356,共12页 应用数学和力学(英文版)
基金 supported by the Key Program of National Natural Science Foundation of China(No.70831005) the National Natural Science Foundation of China(No.10671135) the Fundamental Research Funds for the Central Universities(No.2009SCU11096)
关键词 set-valued mixed Variational inequality (SMVI) projected subgradient method non-Lipschitz mapping CONVERGENCE set-valued mixed Variational inequality (SMVI), projected subgradient method, non-Lipschitz mapping, convergence
  • 相关文献

参考文献28

  • 1Han, W. and Reddy, B. On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal., 32(6), 1778-1807 (1995).
  • 2Cohen, G. Nash equilibria: gradient and decomposition algorithms. Large Scale Systems, 12(2), 173-184 (1987).
  • 3Facchinei, F. and Pang, J. S. Finite-Dimensional Variational Inequalities and Complementary Problems, Springer-Verlag, New York (2003).
  • 4Iusem, A. N. and Svaiter, B. F. A variant of Korpelevich's method for solving variational inequal- ities with a new search strategy. Optimization, 42(4), 309-321 (1997).
  • 5Xia, F. Q., Huang, N. J., and Liu, Z. B. A projected subgradient method for solving generalized mixed variational inequalities. Oper. Res. Lett., 36(5), 637-642 (2008).
  • 6He, Y. R. A new projection algorithm for mixed variational inequalities (in Chinese). Acta Math. Sci., 27A(2), 215-220 (2007).
  • 7Konnov, I. A combined relaxation method for a class of nonlinear variational inequalities. Opti- mization, 51(1), 127-143 (2002).
  • 8Mainge, P. E. Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints. European J. Oper. Res., 205(3), 501-506 (2010).
  • 9Anh, P. N., Muu, L.D., and Strodiot, J. J. Generalized projection method for non-Lipschitz multivalued monotone variational inequalities. Acta Math. Vietnam., 34(1), 67-79 (2009).
  • 10Farouq, N. E. Pseudomonotone variational inequalities: convergence of the auxiliary problem method. J. Optim. Theory Appl., 111(2), 306-325 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部