期刊文献+

一种空间自适应的多光谱遥感影像端元提取方法 被引量:4

A Spatial Adaptive Algorithm for Endmember Extraction on Multispectral Remote Sensing Image
下载PDF
导出
摘要 针对现行的凸锥体分析方法提取多光谱影像端元数目的有限性,提出了基于空间全局聚类分析的多光谱遥感影像端元自适应提取方法。该方法首先通过主成分分析对多光谱遥感影像进行降维处理,去除波段间的相关性;然后根据空间光谱间相似性,采用经典的空间聚类算法ISODATA对影像全局聚类,合并聚类后小斑块,实现影像自动分块;最后根据分块对象地物类型分布的复杂程度和散点图特征分析,自适应确定端元数目,再通过沙漏算法迅速地提取端元。通过TM影像端元提取实验表明该方法能够有效的提取多光谱影像的端元;同时克服了端元数目限制,提高了端元提取的精度,为多光谱遥感影像端元提取提供了新思路。 Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in muhispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape/and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What ' s more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第10期2814-2818,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(40871203,40971228) 国家(863计划)项目(2009AA12Z123,2009AA12Z148)资助
关键词 多光谱 空间自适应 遥感 端元提取 Multispectral imagery Spatial adaptive Remote sensing Endmember extraction
  • 相关文献

参考文献14

  • 1ZHAO Ying-shi(赵英时). The Principle and Method about Remote Sense Application Analysis(遥感应用分析原理与方法). Beijing: Science Press(北京:科学出版社), 2003.
  • 2TONG Qing-xi, ZHANG Bing, ZHENG Lan-fen(童庆禧,张 兵,郑兰芬). The Principles and Applications of Hyperspectral Remote Sensing(高光谱遥感原理与应用). Beijing: Higher Education Press(北京:高等教育出版社), 2006.
  • 3李素,李文正,周建军,庄大方.遥感影像混合像元分解中的端元选择方法综述[J].地理与地理信息科学,2007,23(5):35-38. 被引量:57
  • 4Roberts D A, Gardner M, Church R, et al. Remote Sensing of Environment, 1998, 65: 267.
  • 5Rashed T, Weeks J R, Gadalla M S, et al. Geocarto International, 2001, 16(4): 5.
  • 6Roberts D A, Smith M O, Adams J B. Remote Sensing of Environment, 1993, 44: 255.
  • 7Smith M O, Ustin S L, Adams J B, et al . Remote Sensing of Environment, 1990, 31: 1.
  • 8Lu D S, Batistella M, Moran E. Canada Journal of Remote Sensing, 2004, 30(1): 87.
  • 9Lu D S, Weng Q H. Photogrammetric Engineering & Remote Sensing, 2004, 70(9): 1053.
  • 10普鑫.基于混合概率PCA模型高光谱图像本征维数确定[J].计算机工程,2007,33(9):204-206. 被引量:4

二级参考文献48

  • 1耿修瑞,张兵,张霞,郑兰芬.一种基于高维空间凸面单形体体积的高光谱图像解混算法[J].自然科学进展,2004,14(7):810-814. 被引量:21
  • 2Landgrebe D.Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data[M]//Chen C H.Information Processing for Remote Sensing.New Jersey:World Scientific Publishing Co.,2000.
  • 3Minka T P.Automatic Choice of Dimensionality for PCA[C]//Leen T K,Dietterich T G,Trep V.Advances in Neural Information Processing Systems.MIT Press,2001:598-604.
  • 4Tipping M E,Bishop C M.Probabilistic Principal Component Analysis[J].Journal of the Royal Statistical Society,1999,61(3):611-622.
  • 5Tipping M E,Bishop C M.Mixtures of Probabilistic Principal Component Analysis[J].Neural Computation,1999,11(2):443-482.
  • 6Figueiredo M A T,Leitao J M N,Jain A K.On Fitting Mixture Models[M]//Hancock E,Pellilo M.Energy Minimization Methods in Computer Vision and Pattern Recognition.New York:Springer-Verlag,1999:54-69.
  • 7Figueiredo M A T,Jain A K.Unsupervised Learning of Finite Mixture Models[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(3):381-396.
  • 8Dempster A P,Laird N M,Rubin D B.Maximum-likelihood from Incomplete Data via the EM Algorithm[J].J.Royal Stat.Soc.Ser.B,1977,39(1):1-38.
  • 9ROBERTS D A,SMITH M O,ADAMS J B.Green vegetation,non-photosynthetic vegetation,and soil in AVIRIS[J].Remote Sensing of Environment,1993,44:255-269.
  • 10LU D S,BATISTELLA M,MORAN E.Multi-temporal spectral mixture analysis for Amazonian land-cover change detection[J].Canada Journal of Remote Sensing,2004,30(1):87 -100.

共引文献76

同被引文献31

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部