期刊文献+

基于神经元协同激励的稳定时间可控情景记忆 被引量:2

Episodic Memory with Controllable Steady-state Period Using Coherent Spin-interaction Neural Networks
原文传递
导出
摘要 情景记忆(Episodic memory)被认为是学习与记忆、感觉信号的加工和处理等认知功能的一个重要表现。在大脑的运行过程中,模式的稳定时间是可变化的。为了更好的模仿真实大脑在情景记忆过程中的状态,提出了一种基于神经元协同激励的不同模式的稳定时间不同的情景记忆模型。在本模型当中,模式和输入模式之间的相似性控制模式的稳定时间,相似度和模式稳定时间成正相关。同时,神经元协同激励情景记忆存储容量比传统的情景记忆模型得到明显的提高,并且存储容量和网络规模成指数比例关系。 Episodic information processing, for instance the episodic memory, plays an important role on many functions of brain. In this study, a novel neural network for episodic memory with controllable steady-state period based on coherent spin-interaction was proposed. Owing to a new sampling function, the steady-state period can be controlled by scale parameter and the overlap between the input pattern and the stored patterns. Ascribing to the coherent spin-interaction, the episodic storage capacity can be enlarged compared with the existing episodic memory models. The results show that the episodic storage capacity has exponential relationship to the dimension of the neural network.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2134-2137,共4页 Journal of System Simulation
关键词 HOPFIELD神经网络 协同发火 情景记忆 存储容量 模式稳定时间 Hopfield neural network coherent spin-interaction episodic memory storage capacity steady-state period
  • 相关文献

参考文献12

  • 1C Conway, M Christiansen. Sequential learning in non-human primates [J]. Trends in Cognitive Sciences (S 1364-6613), 2001, 5( 12): 539-546.
  • 2L Waves. The wheres and hows of memory [J]. Science (S0036-8075), 2004, 27(248): 1210.
  • 3D L Schacter, D R Addis. Concept constructive memory: The ghosts of past and future [J]. Nature (S0028-0836), 2007, 445(7123): 27.
  • 4严晨,夏旻,王直杰.基于非线性内电位构造函数的抗伪状态联想记忆[J].系统仿真学报,2009,21(4):1040-1042. 被引量:2
  • 5I Juan, A Francisco, A Sergio. A scale-free neural network for modelling neurogenesis [J]. Physica A (S0378-4371), 2006, 371(1): 71-75.
  • 6A Sandberg, A Lansner. Synaptic depression as an intrinsic driver of reinstatement dynamics'in an attractor network [J]. Neurocomputing (S0925-2312), 2002, 44-46: 615-622.
  • 7H Sompolinsky, I Kanter. Temporal association in asymmetric neural networks [J]. Physical Review Letter (S0031-9007), 1986, 57(22): 2861-2864.
  • 8M Rehn, A Lansner. Sequence memory with dynamical synapses [J]. Neurocomputing (S0925-2312), 2004, 58-60: 271-278.
  • 9M Xia, J Fang, F Pan, E Bai. Robust sequence memory in sparsely- connected networks with controllable steady-state period [J]. Neurocomputing (S0925-2312), 2009, 72(13-15): 3123-3130.
  • 10M Xia, J Fang, Y Tang. Efficient multi-sequence memory with controllable steady-state period and high sequence storage capacity [J]. Neural Computing and Applications (S0941-0643), 2011, 20(1): 17-24.

二级参考文献9

  • 1徐红,杨子光,井海明,冉祥东.Hopfield网络联想记忆外积法设计权的研究[J].计算机与网络,2006,32(3):83-83. 被引量:2
  • 2王瑞敏,赵鸿.神经元传输函数对人工神经网络动力学特性的影响[J].物理学报,2007,56(2):730-739. 被引量:2
  • 3D J Amit, H Gutfreund, H Sompolinsky. Spin-glass models of neural networks [J]. Phys Rev A (S1050-2947), 1985, A32(2): 1007-1018.
  • 4J A Anderson. A simple neural network generating interactive memory [J]. Mathematical Biosciences (S0025-5564), 1972, 14: 197-220.
  • 5J J. Hopfield, neural networks and physical systems with emergent collective computation abilities [J]. Proc. Nat. Acad. Sci., USA: (S0027-8424), 1982, 79(8): 2445-2558.
  • 6N Matsumoto, D Ide, M Watanabe, M Okada, Synaptic depression enlarges basin of attraction [J]. Neurocomputing (S0925-2312), 2005, 65-66: 571-577.
  • 7O Masato. Notions of associative memory and sparse coding [J]. Neural Networks (S0893-6080), 1996, 9(8): 1429-1458.
  • 8S Amari. Characteristics of sparsely encoded associative memory, [J]. Neural networks (S0893-6080), 1989, 2(6): 451-457.
  • 9T Kohonem. Correlation matrix memories [J]. IEEE Trans. Comput (S0018-9340), 1972, C-21: 353-359.

共引文献1

同被引文献19

  • 1林龙年,Remus Osan,Shy Shoham,金文军,左文琪,钱卓,梅兵,陈桂芬.小鼠海马神经网络对情景体验进行实时编码的功能单元的发现与鉴别[J].华东师范大学学报(自然科学版),2005(Z1):208-216. 被引量:2
  • 2王学宁,贺汉根,徐昕.求解部分可观测马氏决策过程的强化学习算法[J].控制与决策,2004,19(11):1263-1266. 被引量:5
  • 3李德明 韩剑 江国强.基于OV7670的图像采集及显示系统设计.仪器仪表学报,2010,.
  • 4Shani G, Brafman R I, Shimony S E. Forward search value iter- ation for POMDPs[C]//International Joint Conference on Arti- ficial Intelligence. USA: International Joint Conferences on Ar- tificial Intelligence, 2007: 261962624.
  • 5Roy N, Gordon G, Thrun S. Finding approximate POMDP so- lutions through belief compression[J]. Journal of Artificial In- telligence Research, 2005, 23: 1-40.
  • 6Kurniawati H, Hsu D, Lee W S. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable be- lief spaces[C]//Robotics: Science and Systems. Zurich, Switzer- land, 2008.
  • 7Wei J Q, Dolan J M, Snider J M, et al. A point-based MDP for robust single-lane autonomous driving behavior under un- certainties[C]//IEEE International Conference on Robotics andAutomation. Piscataway, USA: IEEE, 2011: 2586-2592.
  • 8Theocharous G, Mahadevan S. Approximate planning with hi- erarchical partially observable Markov decision process mod- els for robot navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2002: 1347-1352.
  • 9Ong S C W, Png S W, Hsu D, et al. Planning under uncertainty for robotic tasks with mixed observability[J]. International Jour- nal of Robotics Research, 2010, 29(5): 1053-1068.
  • 10Jockel S, Westhoff D, Zhang J W. EPIROME - A novel frame- work to investigate high-level episodic robot memory[C]//IEEE International Conference on Robotics and Biomimetics. Piscat- away, USA: IEEE, 2007: 1075-1080.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部