期刊文献+

隐私保护的数据发布研究 被引量:16

Research on Data Publishing of Privacy Preserving
下载PDF
导出
摘要 随着信息技术的发展,个人隐私泄露成为日益严重的问题,因此迫切需要研究防止数据发布中个人隐私的泄露。为此,许多研究者提出不同的方法用以实现隐私保护的数据发布。为总结前人工作,介绍了隐私保护数据发布技术的研究意义和发展历程,阐述了本领域研究过程中的背景攻击模型和隐私模型,深入分析了用已有的概化/隐匿方法和聚类方法实现匿名数据发布技术,总结了匿名质量有关的信息度量标准,同时探讨了数据更新引起的增量数据发布方法和高维数据、移动数据的发布,最后归纳了目前研究中的问题并展望了本领域进一步的研究趋势。 With the development of information technology,privacy leakage becomes a serious problem,therefore,it is in urgent need to prevent personal privacy disclosure in data publishing.For this reason,many researchers have proposed different ways to achieve data publishing of privacy protection.To sum up the previous work,we introduced research significance of privacy protection data release technology and its development process,described background attack model and privacy model during the study in this field,deeply analysed existing generalization / suppression method and clustering method to achieve anonymity data release,summarized information metrics of related anonymous dada quality,also discussed incremental data release method caused by data update as well as high-dimensional data and mobile data release,finally,looked further research trends in this field.
出处 《计算机科学》 CSCD 北大核心 2011年第9期11-17,共7页 Computer Science
基金 国家自然科学基金(61073043 61073041 60873037) 黑龙江省自然科学基金(F200901)资助
关键词 隐私保护 数据发布 K-匿名 概化 信息度量 Privacy preserving Data publishing k-anonymity Generalization Information metrics
  • 相关文献

参考文献39

  • 1Samarati P. Protecting Respondents Identities in Microdata Release [J]. IEEE Transactions on Knowledge and Data Engineering, 2001,13(6) : 1010-1027.
  • 2Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10 (5)1571-588.
  • 3Wang K, Fung B C M. Anonymizing sequential releases[C]// Proceedings of KDD 2006. Philadelphia, PA, USA:ACM, 2006:414-423.
  • 4Fung B C M, Wang K, Chen R, et al. Privacy-preserving data publishing:A survey of recent developments [J]. ACM Comput. Surv. ,2010,42(4) :1-53.
  • 5Nergiz M E, Clifton C, Nergiz A E. Multirelational k-anonymity [C] // Proceedings of ICDE ' 07. Istanbul, Turkey, 2007: 1417- 1421.
  • 6Machanavajihala A, Kifer D, Gehrke J, et al.l-diversity.. Privacy beyond k-anonymity[J-. ACM Transactions on Knowledge Discovery from Data, 2007,1 (1).
  • 7Wong R,Li J,Fu A,et al. (a,k)-anonymity..an enhanced k-anonyrnity model for privacy preserving data publishing [C]// Proceedings of KDD 2006. ACM, 2006:754-759.
  • 8Zhang Q, Koudas N, Srivastava D, et al. Aggregate query answering on anonymized tablesFC-ffProeeedings of ICDE'07. Istanbul, Turkey, 2007 : 116-125.
  • 9Li J, Tao Y, Xiao X. Preservation of proximity privacy in publishing numerical sensitive data [C]//Proc. ACM SIGMOD Int. Conf. Manage. Data. Vancouver, Canada: ACM, 2008 : 473-486.
  • 10Ninghui L, Tiancheng L, Venkatasubramanian S. t-Closeness: Privacy beyond k-anonymity and l-diversity[C]//Proceedings of ICDE'07. 2007:106-115.

二级参考文献81

共引文献154

同被引文献143

引证文献16

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部