期刊文献+

参数p(x)为分段常数时斯图谟——刘维尔问题的格林函数及其定性性质

The Green's Functions and Their Qualitative Properties of the S-L Problems with Segmentation Constant function p(x)
下载PDF
导出
摘要 本文导出了参数p(x)为分段常数时斯图谟—刘维尔方程的格林函数,证明了所导出的格林函数的若干定性性质,给出了参数p(x)为分段常数时非线性斯图谟—刘维尔方程边值问题解的积分公式。 When the parameter p(x) is piecewise constant,the Green's function of Sturm-Liouville equation is derived in this paper.Some qualitative properties of the derived Green's function are proved.And given the condition,the integral formula about a nonlinear Sturm-Liouville problem is provided as well.
出处 《安庆师范学院学报(自然科学版)》 2011年第3期22-25,共4页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 非线性斯图谟—刘维尔方程 格林函数 分段函数 定性性质 nonlinear Sturm-Liouville problem Green's fuction segmentation constant qualitative properties
  • 相关文献

参考文献5

二级参考文献14

  • 1Bai Zhanbing, Ge Weigao. Existence of Three Positive Solutions for Some Second-Order Boundary Value Problems [ J ]. Computers and Mathematics with Applications ,2004,48:699 - 707.
  • 2Ma Ruyun, Thompson Bevan. Global behavior of positive solutions of nonlinear three-point boundary value problems [ J ]. Nonlinear Analysis ,2005,60:685 - 701.
  • 3Li Fuyi, Zhang Qi, Liang Zhanping. Existence and multiplicity of solutions of a kind of fourth-order boundary value problem[ J ]. Nonlinear Analysis ,2005,62:803 - 816.
  • 4Im Bong Hak, Lee Eun Kyoung, Lee Yong-Hoon. A global bifurcation phenomenon for second order singular boundary value problems [ J ]. J Math. Anal. Appl. ,2005,308 : 61 - 78.
  • 5Pokomyi Yu V, Borovskikh A V. the connection of the green's function and the influence function for nonclassical problems[ J]. Journal of Mathematical Sciences, 2004,119 (6) :739 - 768.
  • 6Ren Jingli, Ge Weigao. Positive Solition Boundary Value Sign Changing for Three-Point Problems with Nonlinearities [ J ]. AppliedMathematics Letters ,2004,17:451 - 458.
  • 7Liu Bing. Positive solutions of a nonlinear four-point boundary value problems [ J ]. Applied Mathematics and Computation,2004, 155 : 179 - 203.
  • 8Cheung Wing-Sum, Ren Jingli. Positive solution for m-point boundary value problems [ J ]. Math. Anal. Appl. , 2005,303:565 - 575.
  • 9Guo Dajun, Lakshmikantham V. Nonlinear Problems in Abstract Cones [ M ]. Academic Press, Boston, 1988.
  • 10Liu Yansheng, Yu Huimin. Existence and Uniqueness of Positive Solution for Singular Boundary Value Problem [ J ]. Computers and Mathematms with Applications,2005,50:133 -143.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部