期刊文献+

非协调板元误差估计的新途径 被引量:1

New Approch of the Error Estimate for Nonconforming Plate Element
下载PDF
导出
摘要 该文利用散度空间的性质,给出了一些非协调板元误差估计的新方法,得到误差的能量模和L^2模的估计.较以前的方法更直接简便,并且能够达到所要求的阶数. In this paper,some new methods of error estimates for nonconforming plate element is given according to the properties of divergence space.The error estimate of energy norm and L^2(Ω) norm is proved.Compared with the former methods,it is more direct and convenient, and it also obtains the order required.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第4期1091-1096,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(10771198)资助
关键词 非协调元 误差估计 板弯曲问题 Nonconforming element Error estimates Plate-bending problem
  • 相关文献

参考文献4

二级参考文献35

  • 1陈绍春,石东洋.具有几何对称性的12参数矩形板元[J].高等学校计算数学学报,1996,18(3):233-238. 被引量:8
  • 2Brenner S C. scott L R. The Mathematical Theory of Finite Element Methods[M]. Springer-Verlag, 1994.
  • 3Ciarlet P G. The Finite Element Method lot Elliptic Problem[M]. North-Holland: Amsterdam, 1978.
  • 4Lasccaux P, Lesiant P. Some nonconforming finite elements for the plate bending problems[J]. RAIRO Anal Numer, 1975;7:9-53.
  • 5Shi Zhongci. The F-E-M-test for convergence of nonconforming finite elements[J]. Math Comp, 1987;49:391-4O5.
  • 6Shi Zhongci. The generalized patch test for zienkiewiczs triangles[J]. J Comp Math, 1984;2:276-286.
  • 7Stummel F. The generalized patch test[J]. SAIM J Numer Anal, 1979;16:449-471.
  • 8Adams R A. Sobolev Spaces[M]. NewYork: Academic Press, 1975.
  • 9Temam R, Wang X M. Asymptotic analysis of oseen type equations in a channel at small viscosity. Indiana University Math J, 1996, 45(3): 863-916
  • 10Schlichting H. Boundary Layer Theory. 7th Edition. McGrawHall, 1987

共引文献54

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部