期刊文献+

基于强度Pareto进化算法的最优潮流 被引量:2

Optimal Power Flow Based on Strength Pareto Evolutionary Algorithm
下载PDF
导出
摘要 为更好地解决电力系统最优潮流问题,分析了当前多目标优化算法存在的缺陷,将强度Pareto进化算法(SPEA)应用于最优潮流中。SPEA是一种新型的多目标进化算法,具有收敛速度快,参数设置少,全局搜索能力强,所求的Pareto最优解分布均匀等优点。通过对IEEE30节点测试系统运用SPEA和混沌粒子群方法(CPSO)的计算结果对比,表明SPEA应用于最优潮流,为各目标函数之间的权衡分析提供了有效工具,是一种求解最优潮流问题的有效方法。 In order to solve the Optimal Power Flow(OPF) in power system better,the drawback of multi-objective optimization algorithm is analyzed in this paper,and Strength Pareto Evolutionary Algorithm(SPEA) is applied to OPF.SPEA is a new type of multi-objective evolutionary algorithm,which has some advantages such as fast convergence rate,less parameters settings,strong ability of global searching and distribution uniformity of Pareto optimal solutions solved.Through the comparison of calculated results by using SPEA and Chaotic Particle Swarm Optimization(CPSO) in IEEE30 node test system,it explains the use of SPEA in OPF has good effects and provides effective tools for tradeoff analysis of each target function.Thus the validity and efficiency of proposed algorithm are confirmed.SPEA provides a new thought for multi-objective Optimal Power Flow.
出处 《电测与仪表》 北大核心 2011年第9期53-56,72,共5页 Electrical Measurement & Instrumentation
关键词 电力系统 最优潮流 强度Pareto进化算法 PARETO最优解 power system optimal power flow strength pareto evolutionary algorithm pareto-optimal solutions
  • 相关文献

参考文献10

  • 1Raymond R.Shouhs, D.T.Sun. Optimal Power Flow Based Upon P-Q Decomposition[J]. IEEE Trans on PAS, 1982, 101(2): 397-405.
  • 2彭磊,张建平,吴耀武,娄素华.基于GA、PSO结合算法的交直流系统无功优化[J].高电压技术,2006,32(4):78-81. 被引量:23
  • 3Shu Jun,Zhang Lizi,Liu Yi,et al. An Improved genetic Algorithm for Dynamic Reactive Power Optimization in Electricity Market [C]. 2004 InternationalConferenceonPowerSystemTechnology(POWERCON ' 2004) Singapore, 2004:1508-1512.
  • 4刘玲,钟伟民,钱锋.改进的混沌粒子群优化算法[J].华东理工大学学报(自然科学版),2010,36(2):267-272. 被引量:39
  • 5熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J].中国电机工程学报,2006,26(11):102-108. 被引量:86
  • 6顾丹珍,徐瑞德.一种地区电网多目标无功优化的新方法——改进模拟退火算法[J].电网技术,1998,22(1):71-74. 被引量:51
  • 7Zitzler E ,Thiele L. Multi-objective Evolutio- nary Algorithm Comparative Case Study and the Strength Pareto Approach [J]. IEEE Trans on Evolutionary Computation, 1999, 3(4):257-271.
  • 8Zitzler E, Thiele L. SPEA2:Improving the Strength Pareto Evolutionary Algorithm for Multi-objective Optimization [C]. Proceedings of the Evolutionary Methods for Design,Optimization,and Control. Barcelona, Spain, 2002: 19-26.
  • 9Lai L L, Ma J T, Yokoyama R, Zhao M. Improved Genetic Algorithms for Optimal Power Flow under Both Normal and Contingent Operation States [J]. Electric Power Energy Syst 1997, 19(5):287-92.
  • 10Alsac O,Scott B. Optimal Power Flow with Steady State Security[J]. IEEE Trans Power Apparatus Syst 1974, 93(3):12-16.

二级参考文献45

共引文献183

同被引文献39

  • 1叶彬,张鹏翔,赵波,曹一家.多目标混合进化算法及其在经济调度中的应用[J].电力系统及其自动化学报,2007,19(2):66-72. 被引量:9
  • 2郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 3Luis F,Antonio P,Garetb P. Evaluating distributed generation impacts with a multiobjective index[J].{H}IEEE Transactions on Power Delivery,2006,(3):1452-1459.
  • 4DEBK,PRATAP A,AGARWAL S. A fast and elitist multi-objective genetic algorithm:NSGA-II[J].{H}IEEE Transactions on Evolutionary Computation,2002,(2):182-197.
  • 5Sujatha K,Sarika K,Noel S. Impact of distributed generation on distribution contingency analysis[J].{H}Electric Power Systems Research,2008,(9):1537-1545.
  • 6CHEN Chunbao,WANG Liya. Multiple-platform based product family design for mass customization using a modified genetic algorithm[J].{H}Journal of Intelligent Manufacturing,2008,(19):577-589.
  • 7RACHMAWATI L,SRINIVASAN D. Multi -objective evolutionary algorithm with controllable focus on the knees of the pareto front [ J ]. Evolutionary Computation,2009,13 (4) : 810 - 824.
  • 8BASTEN T. Pareto analysis with uncertainty [ C ]//9th Interna- tional Conference on Embedded and Ubiquitous Computing. Mel-bourne, VIC. 2011,189 - 196.
  • 9MOHAMED F A, KOIVO H N. MicroGrid Online Management and Balancing Using Muhiobjective Optimization [ C ]//Power Tech,2007 IEEE Lausanne. 2007.
  • 10BASU M. Particle swarm optimization based goal attainment meth- od for dynamic economic emission dispatch [ J ]. Electric Power Components and Systems,2006,34 (9) : 1015 - 1025.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部