期刊文献+

犯罪量动态优化组合预测方法 被引量:4

Dynamic Optimization Combination Forecasting Method for Crime Quantity
下载PDF
导出
摘要 单一预测模型在预测犯罪量时难以协调拟合和泛化关系,从而影响预测结果的准确性。针对以上问题,提出一种数据驱动的可动态优化组合预测方法。以分析自回归求和移动平均模型、向量自回归模型及支持向量机模型的优点为基础,使用后验概率为每个模型赋予权重,结合误差最小原则动态调整权重。实验结果表明,该方法具有较高的预测精度和稳定性,能满足短时犯罪量预测的需要。 When single forecasting model forecastes the crime quantity,it is difficult to coordinate the fitting and generalization.The result of forecasting is not accuracy.Aiming at the problem presented above,this paper proposes a data-driven dynamic optimization combination forecasting method based on each advantages of the model virtues of Autoregressive Integrated Moving Average(ARIMA),Vector Autoregressive Model(VAR) and Support Vector Machine(SVM).The method gives the weight to each model by using the posterior probability,then dynamic adjusts the weight on the principle of minimum error.Experimental results show that the method has high prediction accuracy and stability to meet the needs of short-time crime forecasting.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第17期274-275,278,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773049) 江苏大学高级人才启动基金资助项目(09JDG041)
关键词 犯罪量预测 组合预测模型 支持向量机模型 向量自回归模型 自回归求和移动平均模型 crime quantity forecasting combination forecasting model Support Vector Machine(SVM) model Vector Autoregressive Mo-del(VAR) Autoregressive Integrated Moving Average(ARIMA) model
  • 相关文献

参考文献5

  • 1杨莉莉,杨永川.基于社会网络的犯罪组织关系挖掘[J].计算机工程,2009,35(15):91-93. 被引量:11
  • 2Cohn G E, Rotton J. Even Criminals Take a Holiday: Instrumental and Expressive Crimes on Major and Mimor Holidays[J]. Journal of Criminal Justice, 2003, 31(4): 351-360.
  • 3Cohn G E, Rotton J. A Moderator-variable Time-series Analysis of Routine Activities[J]. Journal of Environmental Psychology, 2000, 20(3): 257-272.
  • 4Wilpen G, Andreas O, Yvonne T. Short-term Forecasting of Crime[J]. International Journal of Forecasting, 2003, 19(4): 579- 594.
  • 5Chen Peng, Yuan Hongyong, Shu Xueming. Forecasting Crime Using the ARIMA Model[C]//Proc. of the 5th International Con- ference on Fuzzy Systems and Knowledge Discovery. Jinan, China: [s. n.], 2008.

二级参考文献4

  • 1Estevez P A,Vera E Saito K.Selecting the Most Influential Nodes in Social Networks[C]//Proceedings of International Joint Conference on Neural Networks.Orlando,Florida,USA:[s.n.],2007:12-17.
  • 2Santos E E,Pan Long,Arendt D,et al.An Effective Anytime Anywhere Parallel Approach for Centrality Measurements in Social Network Analysis[C]//Proceedings of 2006 IEEE International Conference on System,Man,and Cybertics.[S.l.]:IEEE Press,2006:8-11.
  • 3Kiss C,Scholz A,Bichler M.Evaluating Centrality Measures in Large Call Graphs[C]//Proceedings of the 8th IEEE International Conference on E-Commerce Technology and the 3rd IEEE International Conference on Enterprise Computing,E-Commerce,and E-Services.Washington D.C.,USA:IEEE Computer Society Press,2006.
  • 4温粉莲,唐常杰,乔少杰,等.挖掘被监控社团核心的最短路径[EB/OL].(2008-05-16).http://www.paper.edu.cn/ddownloadpaper.php?serial_number=200607-42.

共引文献10

同被引文献25

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部