期刊文献+

节点结构互异的复杂网络的混沌同步 被引量:3

Chaos Synchronization of Complex Networks with Different Node Structure
下载PDF
导出
摘要 基于Lyapunov稳定性理论,分析了一种实现节点结构互异的复杂网络的混沌同步方法.以异结构混沌系统作为节点构造复杂网络,确定了复杂网络中连接节点的耦合函数的形式.最后,以Lorenz系统、Chen系统、Liu系统为例作为网络的节点构成复杂网络,进行数值仿真,发现整个复杂网络存在稳定的混沌同步现象,验证了结论的可靠性. Based on Lyapunov stability theorem, the method for chaos synchronization of complex networks with different node structure is analyzed. The different structure chaotic systems are taken as nodes to construct complex networks, and the coupling function of complex networks are given. Finally, the result of numerical calculation for the whole networks with Lorenz system,Chen system and Liu system as nodes shows that the theorem is reliable.
出处 《兰州交通大学学报》 CAS 2011年第4期124-127,共4页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(60870008) 甘肃省自然科学基金(3ZS051-A25-030 3ZS-042-B25-049 0803RJZA012 1010RJZA067) 甘肃省高校科研基金(620004)
关键词 复杂网络 混沌同步 异结构 complex network chaos synchronization different structure
  • 相关文献

参考文献10

二级参考文献46

共引文献58

同被引文献22

  • 1赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究[J].复杂系统与复杂性科学,2005,2(2):45-48. 被引量:45
  • 2Chen Y Z,Li N, He D R A study on some urban bustransport networks[J], Physica A,2007,376:747-754.
  • 3Liao T L, Tsai S H. Adaptive synchronization of chaot- ic systems and its application to secure communications [J]. Chaos,Solitons and Fractals,2000,11:1387-1396.
  • 4Li C G, Xu H B, Liao X F, et al. Synchronization in small-world oscillator networks with coupling delays [J]. Physica A,2004,335:359-364.
  • 5Wang Z Y, Huang L H,Wang Y N,et al. Synchroniza- tion analysis of networks with both delayed and non- delayed couplings via adaptive pinning control method [J]. Commun Nonlinear Sci Numer Simulat, 2010,15. 4202-4208.
  • 6Wang X, Chen G. Synchronization in small-world dy- namical networks [J]. Chaos, Solitons and Fractals, 2002,12.. 187-192.
  • 7Li P, Yi Z, Zhang L. Global synchronization of a class of delayed complex network [J]. Chaos, Solitons and Fractals, 2006,30: 903-908.
  • 8Mello L F, Messias M, Braga D C. Bifurcation analysis of a new Lorenz-like chaotic system[J]. Chaos, Soli- tons and Fractals, 2008,37 : 1244-1255.
  • 9Hao B B, Yu H, Jing Y W, et al. On synchronizability and heterogeneity in unweighted networks[J]. Physi- ca A, 2009,388 : 1939-1945.
  • 10高洋,李丽香,彭海朋,杨义先,张小红.多重边复杂网络系统的稳定性分析[J].物理学报,2008,57(3):1444-1452. 被引量:16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部