期刊文献+

一种求解不等式约束优化问题的光滑化算法

A Smoothing Method Based on Interior Point Techniques for Inequality Constrained Optimization
下载PDF
导出
摘要 利用光滑函数建立了不等式约束优化问题KT条件的一个扰动方程组,提出了一个新的内点型算法.该算法在有限步终止时当前迭代点即为优化问题的一个精确稳定点.在一定条件下算法具有全局收敛性,数值试验表明该算法是有效的. A smoothing method based on interior point techniques for minimizing a nonlinear function subject to nonlin- ear inequality constrained was described, It applies a successive disturbing nonlinear system to approximate the KT conditions. The current iterated point is an exact stationary point of the problem when the algorithm terminates finitely. Under reasonable conditions, the global convergence is established. Numerical tests were presented to confirm the efficiency of the method.
作者 张浩 张新华
出处 《经济数学》 北大核心 2011年第3期9-12,共4页 Journal of Quantitative Economics
基金 江苏省农机局科研基金资助项目(GXZ09014)
关键词 非线性规划 内点算法 全局收敛性 nonlinear programming interior point method global convergence
  • 相关文献

参考文献6

  • 1R H BYRD, M E HRIBAR, J NOCEDAL. An interior point algorithm for large-scale nonlinear programming[J~. SIAM J. Optim. 1999,9:877-900.
  • 2R H BYRD,J C GILBERT, J NOCEDAL. A trust region method based on interior point techniques for nonlinear pro- gramming[J]. Math. Program. , Ser. A,2000,89 : 149- 185.
  • 3M ULBRICH, S ULBRICH,L N VICENTE. A globally con- vergent primal-dual interior-point filter method for nonlinear programming[J]. Math. Program, Ser A, 2004, 100: 379-410.
  • 4R FLETCHER, S LEYFFER. Nonlinear programming with- out a penalty funetion[J]. Math. Programm. 2002,91:239- 269.
  • 5王秀国,邱菀华.一种解决不等式约束优化问题的光滑牛顿法[J].运筹与管理,2004,13(5):62-66. 被引量:3
  • 6朱志斌,简金宝,张聪.非线性互补约束均衡问题的一个SQP算法[J].应用数学和力学,2009,30(5):613-622. 被引量:9

二级参考文献17

  • 1Outrate J V, Kocvare M, Zowe J. Nonsmooth Approach to Optimization Problems With Equilibrium Consrtaints[ M]. The Netherlands: Kluwer Academic Publishem, 1998.
  • 2Jiang H, Ralph D. Smooth SQP method for mathematical programs with nonlinear complementarity constraints[ J ]. SIAM J Optimization, 2000,10(3) : 779-808.
  • 3Fukushima M, Luo Z Q, Pang J S. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[ J]. Comp Opti Appl, 1998, 10 (1) :5-34.
  • 4Fukushima M, Pang J S. Some feasibility issues in mathematical programs with equilibrium constraints[J]. SIAMJ Optimization, 1998,8(3) : 673-581.
  • 5Panier E R, Tits A L. On combining feasibility, descent and superlinear convergence in inequality constrained optimization[ J]. Mathematical Programming, 1993,59(1) : 261-276.
  • 6Zhu Z B, Zhang K C. A superlineariy convergent SQP algorithm for mathematical programs with linear complementarity constraints[ J]. Applied Mathematics and Computation ,2005,172(1) : 222-244.
  • 7Panier E R, Tits A L. A stoerlinearly convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM J Control Optim, 1987,25(3) : 934-950.
  • 8Facchinei F, Dacidi S. Quadraticly and superlinearly convergent for the solution of inequality constrained op optimization problem[ J]. J Optim Theory Appl, 1995,85(2 ): 265-289.
  • 9EL-Bakry A S, Tapia R A, Tsuchiya T, Zhanghang T, On the formulation and theory of the Newton interior-point method for nonlinear programming[J]. J.Optim. Theory. Appl. 1996,89:507-541.
  • 10Jiang Houyuan, Masao Fukushima, Liqun Qi, Defeng Sun. A trust region method for solving generalized complementarity problems[J]. SEAM J.OPTIM, 1998,8:140-157.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部