期刊文献+

Shrinking Projection Methods for a Family of Quasi-φ-Strict Asymptotically Pseudo-Contractions in Banach Spaces 被引量:6

Shrinking Projection Methods for a Family of Quasi-φ-Strict Asymptotically Pseudo-Contractions in Banach Spaces
下载PDF
导出
摘要 The purpose of this article is to propose a shrinking projection method and prove a strong convergence theorem for a family of quasi-φ-strict asymptotically pseudo-contractions. Its results hold in reflexive, strictly convex, smooth Banach spaces with the property (K). The results of this paper improve and extend the results of Matsushita and Takahashi, Marino and Xu, Zhou and Gao and others. The purpose of this article is to propose a shrinking projection method and prove a strong convergence theorem for a family of quasi-φ-strict asymptotically pseudo-contractions. Its results hold in reflexive, strictly convex, smooth Banach spaces with the property (K). The results of this paper improve and extend the results of Matsushita and Takahashi, Marino and Xu, Zhou and Gao and others.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第5期905-914,共10页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.10771050) the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No.11JK0486)
关键词 strong convergence a family of quasi-φ-strict asymptotically pseudo-contractions generalized projection shrinking projection method Banach spaces. strong convergence a family of quasi-φ-strict asymptotically pseudo-contractions generalized projection shrinking projection method Banach spaces.
  • 相关文献

参考文献2

二级参考文献12

  • 1Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive[J]. Proc Amer Math Soc, 1972, 35(1):171-174.
  • 2Xu H K. Existence and convergence for fixed point of mapping of asymptotically nonexpansive type[J]. Nonlinear Anal TMA,1991,224:91-101.
  • 3Zhang S S, Cho Y J, Zhou H Y. Iteration Methods for Nonlinear Operator Equations in Banach Spaces[M]. New York :Nova Science Publishers, 2002.
  • 4Takahashi W. Nonlinear Functional Analysis[M]. Yokohama Publishers, Yokohama,2000.
  • 5Kamimura S, Takahashi W. Strong convergence of a solutions to accretive operator inclusions and applications[J]. Set-Val-ue Anal, 2000,8 : 361-374.
  • 6Haugazeau Y. Sur les Inequations Variationnelles et la Minimisation de Fonctionnelles Convexes. Paris: Universite de Paris, 1968.
  • 7Qin X L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal., 2007, 67(6): 1958-1965.
  • 8Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 2005, 134: 257-266.
  • 9Zhou H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 2008, 343: 546-556.
  • 10Takahashi W. Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000.

共引文献22

同被引文献20

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部