期刊文献+

求解高维函数优化的动态粒子群算法 被引量:5

Dynamic particle swarm optimization for solving high dimensional function
下载PDF
导出
摘要 针对基本粒子群优化算法对高维函数优化时搜索精度不高的缺陷,提出了一种动态粒子群优化算法。该算法采用了通过调节阈值对粒子运动轨迹进行动态改变的策略,使得粒子对周围环境的适应能力不受进化代数的影响,从而保证了算法在迭代后期仍具有较强的搜索能力。实验结果表明,与文献算法相比,该算法在处理高维函数优化时具有更强的寻优能力和更高的搜索精度。 To improve the search quality of the standard PSO algorithm for solving high-dimensional function,a dynamic particle swarm optimization algorithm is proposed.The strategy that particle trajectory is changed dynamically by adjusting the threshold value is used to make particles adaptability for the surrounding environment without the influence of evolutionary algebra,and the strong search capability of algorithm in iterative later is ensured.Simulations show that proposed algorithm has more powerful optimizing ability and higher optimizing precision in high-dimensional function optimization than literature algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期36-37,51,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.70701013)~~
关键词 粒子群优化算法 动态粒子群优化算法 高维函数优化 particle swarm optimization algorithm dynamic particle swarm optimization algorithm high-dimensional function optimization
  • 相关文献

参考文献7

二级参考文献51

共引文献110

同被引文献42

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部