期刊文献+

基于多项式混沌方法的柔性多体系统不确定性分析 被引量:10

Uncertainty Analysis of Flexible Multibody Systems Using Polynomial Chaos Methods
下载PDF
导出
摘要 研究了柔性多体系统的参数不确定性问题。采用绝对节点坐标方法来描述柔性体的变形,运用多项式混沌方法对柔性多体系统进行不确定性分析。通过理论分析与算例研究,对比了多项式混沌方法与广泛使用的Monte Carlo方法的精度和效率。结果表明,在相同精度要求下,多项式混沌方法在复杂柔性多体系统不确定性分析中效率更高,在工程分析中更具实用价值。 A parametrical uncertainty analysis of flexible multibody systems was presented.The deformations of flexible parts were modeled using ANCF.Polynomial chaos methods were employed to solve ANCF-based flexible multibody systems with random variables.Theoretical analysis and numerical examples were made to compare the accuracy and efficiency of polynomial chaos methods and Monte Carlo simulation method.Results show that polynomial chaos methods are more effective than Monte Carlo simulation to achieve the same accuracy in solving complex flexible multibody systems.
机构地区 华中科技大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第19期2341-2343,2348,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(60874064)
关键词 柔性多体系统 绝对节点坐标 多项式混沌 随机响应面方法 flexible multibody system absolute nodal coordinate formulation(ANCF) polynomial chaos stochastic response surface method(SRSM)
  • 相关文献

参考文献9

  • 1Shabana A A. Flexible Muhibody Dynamics: Review of Past and Recent Developments[J]. Multi body System Dynamics, 1997, 1: 189-222.
  • 2Tian Qiang, Liu Cheng, Machado M, et al. A New Model for Dry and Imbricated Cylindrical Joints with Clearance in Spatial Flexible Multibody Sys tems[J]. Nonlinear Dynamics, 2011,64:25-47.
  • 3Garcia--Vallejo D, Mayo J,Escalona J L,et al. Ef ficient Evaluation of the Elastic Forces and the Ja eobian in the Absolute Nodal Coordinate Formula tion[J]. Nonlinear Dynamics, 2004, 35: 313-329.
  • 4Sandu A, Sandu C, Ahmadian M, et al. Modeling Multibody Systems with Uncertainties. Pare I: Theoretical and Computational Aspects[J]. Muhi body System Dynamics, 2006, 15: 369-391.
  • 5Sandu C, Sandu A,Ahmadian M,et al. Modeling Multibody Systems with Uncertainties. Par1 Ⅱ: Numerical Applications[J]. Multibody System Dy namics, 2006, 15: 241-262.
  • 6何柏岩,王树新,金国光.计及参数不确定性的卫星太阳能帆板的柔性多体动力学研究[J].自然科学进展,2003,13(4):434-438. 被引量:4
  • 7Xiu D, Karniadakis G E. Modeling Unccrtainly in Flow Simulations Via Generalized Polynomial Cha os[J]. Journal of Computational Physics, 2003, 187: 137-167.
  • 8Sarkar A, Ghanem R. Mid- frequency Structuraf Dynamics with Parameter Uncertainty[J]. Compurer Methods in Applied Mechanics and Engineer ing, 2002, 191: 5499-$513.
  • 9Li L, Sandu C. On the Impact of Cargo Weight. Vehicle Parameters, and Terrain Characteristics on the Prediction of Traction for Off- road Vehicles[J]. Journal of Terramechanics, 2007, 44: 221-238.

二级参考文献4

共引文献3

同被引文献89

  • 1WANG XiaoDong1,2 & KANG Shun1 1 Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China,2 Department of Mechanical Engineering, Vrije Universiteit Brussel, Brussels 1050, Belgium.Application of polynomial chaos on numerical simulation of stochastic cavity flow[J].Science China(Technological Sciences),2010,53(10):2853-2861. 被引量:9
  • 2刘全,王瑞利,林忠.非嵌入式多项式混沌方法在拉氏计算中的应用[J].固体力学学报,2013,34(S1):224-233. 被引量:12
  • 3蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:55
  • 4刘锦阳,李彬,洪嘉振.作大范围空间运动柔性梁的刚-柔耦合动力学[J].力学学报,2006,38(2):276-282. 被引量:23
  • 5Schiehlen W. Research trends in multibody system dynamics. Multibody Syst Dyn, 2007, 18:3-13.
  • 6Garcia-Vallejo D, Sugiyama H, Shabana AA. Finite element analysis of the geometric stiffening effect. Multibody Dynamics, 2005, 219(K): 187-211.
  • 7Baumgarte J. A new method of stabilization for holonomic constraints. Journal of Applied Mechanics, 1983, 50: 869- 870.
  • 8Wang SX, Wang YH, He BY. Dynamic modeling of flexible multibody systems with parameter uncertainty. J Tianjin Chaos, Solitons and Fractals, 2008, 36:605-611.
  • 9Sandu C, Sandu A, Ahmadian M. Modeling multibody systems with uncertainties. Part II: numerical applications. Multibody System Dynamics, 2006, 15(3): 241-262.
  • 10Sandu A, Sandu C, Ahmadian M. Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody System Dynamics, 2006, 15(4):369-391.

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部