摘要
Background Cystic echinococcosis due to Echinococcus granulosus (E. granulosus) is one of the most important chronic helminthic diseases, especially in sheep/cattle-raising regions. The larval stage of the parasite forms a cyst that grows in the liver, lung, or other organs ofthe host. To ensure a long life in the host tissues, the parasite establishes complex inter-cellular communication systems between its host to allow its differentiation toward each larval stage. Recent studies have reported that this communication is associated with the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade in helminth parasites, and in particular that these protein kinases might serve as effective targets for a novel chemotherapy for cystic echinococcosis. The aim of the present study investigated the biological function of a novel ERK ortholog from E. granulosus, EgERK. Methods DNA encoding EgERK was isolated from protoscolices of E. granulosus and analyzed using the LA Taq polymerase chain reaction (PCR) approach and bioinformatics. Reverse transcription PCR (RT-PCR) was used to determine the transcription level of the gene at two different larval tissues. Western blotting was used to detect levels of EgERK protein. The expression profile of EgERK in protoscolices was examined by immunofluorescence. Results We cloned the entire Egerk genomic locus from E. granulosus. In addition, two alternatively spliced transcripts of Egerk, Egerk-A, and Egerk-B were identified. Egerk-A was found to constitutively expressed at the transcriptional and protein levels in two different larval tissues (cyst membranes and protoscol(ces). Egerk-A was expressed in the tegumental structures, hooklets, and suckers and in the tissue surrounding the rostellum of E. granulosus protoscolices. Conclusions We have cloned the genomic DNA of a novel ERK ortholog from E. granulosus, EgERK (GenBank ID HQ585923), and found that it is constitutively expressed in cyst membrane and protoscolex. These findings will be useful in further study of the biological functions of the gene in the growth and development of Echinococcus and will contribute to research on novel anti-echinococcosis drug targets.
Background Cystic echinococcosis due to Echinococcus granulosus (E. granulosus) is one of the most important chronic helminthic diseases, especially in sheep/cattle-raising regions. The larval stage of the parasite forms a cyst that grows in the liver, lung, or other organs ofthe host. To ensure a long life in the host tissues, the parasite establishes complex inter-cellular communication systems between its host to allow its differentiation toward each larval stage. Recent studies have reported that this communication is associated with the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade in helminth parasites, and in particular that these protein kinases might serve as effective targets for a novel chemotherapy for cystic echinococcosis. The aim of the present study investigated the biological function of a novel ERK ortholog from E. granulosus, EgERK. Methods DNA encoding EgERK was isolated from protoscolices of E. granulosus and analyzed using the LA Taq polymerase chain reaction (PCR) approach and bioinformatics. Reverse transcription PCR (RT-PCR) was used to determine the transcription level of the gene at two different larval tissues. Western blotting was used to detect levels of EgERK protein. The expression profile of EgERK in protoscolices was examined by immunofluorescence. Results We cloned the entire Egerk genomic locus from E. granulosus. In addition, two alternatively spliced transcripts of Egerk, Egerk-A, and Egerk-B were identified. Egerk-A was found to constitutively expressed at the transcriptional and protein levels in two different larval tissues (cyst membranes and protoscol(ces). Egerk-A was expressed in the tegumental structures, hooklets, and suckers and in the tissue surrounding the rostellum of E. granulosus protoscolices. Conclusions We have cloned the genomic DNA of a novel ERK ortholog from E. granulosus, EgERK (GenBank ID HQ585923), and found that it is constitutively expressed in cyst membrane and protoscolex. These findings will be useful in further study of the biological functions of the gene in the growth and development of Echinococcus and will contribute to research on novel anti-echinococcosis drug targets.
基金
This work was supported by grants from the National Science Foundation of China (No. 30960341 and No. 30860253), and Xinjiang Key-Lab Project Grants on Echinococcosis (No. XJDX0202-2009-03).